IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v387y1997i6636d10.1038_43136.html
   My bibliography  Save this article

Self-trapping of incoherent white light

Author

Listed:
  • Matthew Mitchell

    (Center for Photonics and Optoelectronic Materials and Princeton Materials Institute, Princeton University, Princeton)

  • Mordechai Segev

    (Center for Photonics and Optoelectronic Materials and Princeton Materials Institute, Princeton University, Princeton)

Abstract

Optical pulses—wave-packets—propagating in a linear medium have a natural tendency to broaden in time (dispersion) and space (diffraction). Such broadening can be eliminated in a nonlinear medium that modifies its refractive index in the presence of light in such a way that dispersion or diffraction effects are counteracted by light-induced lensing1,2. This can allow short pulses to propagate without changing their shape2,3, and the ‘self-trapping’ of narrow optical beams1 whereby a beam of light induces a waveguide in the host medium and guides itself in this waveguide, thus propagating without diffraction4. Self-trapped pulses in space and time have been investigated extensively in many physical systems and, as a consequence of their particle-like behaviour, are known as ‘solitons’ (ref. 5). Previous studies of this phenomenon in various nonlinear media6,7,8,9,10,11,12 have involved coherent light, the one exception being our demonstration13 of self-trapping of an optical beam that exhibited partial spatial incoherence. Here we report the observation of self-trapping of a white-light beam from an incandescent source. Self-trapping occurs in both dimensions transverse to the beam when diffraction effects are balanced exactly by self-focusing in the host photorefractive medium. To the best of our knowledge, this is the first observation of self-trapping for any wave-packet that is both temporally and spatially incoherent.

Suggested Citation

  • Matthew Mitchell & Mordechai Segev, 1997. "Self-trapping of incoherent white light," Nature, Nature, vol. 387(6636), pages 880-883, June.
  • Handle: RePEc:nat:nature:v:387:y:1997:i:6636:d:10.1038_43136
    DOI: 10.1038/43136
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/43136
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/43136?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rao, Jiguang & Mihalache, Dumitru & He, Jingsong & Zhou, Fang, 2023. "Degenerate and non-degenerate vector solitons and their interactions in the two-component long-wave–short-wave model of Newell type," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:387:y:1997:i:6636:d:10.1038_43136. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.