IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v386y1997i6621d10.1038_386159a0.html
   My bibliography  Save this article

Clocking transient chemical changes by ultrafast electron diffraction

Author

Listed:
  • J. Charles Williamson

    (California Institute of Technology)

  • Jianming Cao

    (California Institute of Technology)

  • Hyotcherl Ihee

    (California Institute of Technology)

  • Hans Frey

    (California Institute of Technology)

  • Ahmed H. Zewail

    (California Institute of Technology)

Abstract

With the advent of femtosecond (fs) time resolution in spectroscopic experiments, it is now possible to study the evolution of nuclear motions in chemical and photobiochemical reactions. In general, the reaction is clocked by an initial fs laser pulse (which establishes a zero of time) and the dynamics are probed by a second fs pulse; the detection methods include conventional and photoelectron spectroscopy and mass spectrometry1–4. Replacing the probe laser with electron pulses offers a means for imaging ultrafast structural changes with diffraction techniques5–8, which should permit the study of molecular systems of greater complexity (such as biomolecules). On such timescales, observation of chemical changes using electron scattering is non-trivial, because space-charge effects broaden the electron pulse width and because temporal overlap of the (clocking) photon pulse and the (probe) electron pulse must be established. Here we report the detection of transient chemical change during molecular dissociation using ultrafast electron diffraction. We are able to detect a change in the scattered electron beam with the zero of time established unambiguously and the timing of the changes clocked in situ. This ability to clock changes in scattering is essential to studies of the dynamics of molecular structures.

Suggested Citation

  • J. Charles Williamson & Jianming Cao & Hyotcherl Ihee & Hans Frey & Ahmed H. Zewail, 1997. "Clocking transient chemical changes by ultrafast electron diffraction," Nature, Nature, vol. 386(6621), pages 159-162, March.
  • Handle: RePEc:nat:nature:v:386:y:1997:i:6621:d:10.1038_386159a0
    DOI: 10.1038/386159a0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/386159a0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/386159a0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhenzhen Wang & Xiaoqing Hu & Xiaorui Xue & Shengpeng Zhou & Xiaokai Li & Yizhang Yang & Jiaqi Zhou & Zheng Shu & Banchi Zhao & Xitao Yu & Maomao Gong & Zhenpeng Wang & Pan Ma & Yong Wu & Xiangjun Che, 2023. "Directly imaging excited state-resolved transient structures of water induced by valence and inner-shell ionisation," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Lixin He & Siqi Sun & Pengfei Lan & Yanqing He & Bincheng Wang & Pu Wang & Xiaosong Zhu & Liang Li & Wei Cao & Peixiang Lu & C. D. Lin, 2022. "Filming movies of attosecond charge migration in single molecules with high harmonic spectroscopy," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:386:y:1997:i:6621:d:10.1038_386159a0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.