IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v386y1997i6621d10.1038_386156a0.html
   My bibliography  Save this article

Colossal magnetoresistance in Cr-based chalcogenide spinels

Author

Listed:
  • A. P. Ramirez

    (Lucent Technologies)

  • R. J. Cava

    (Lucent Technologies
    Bowen Hall, Princeton University)

  • J. Krajewski

    (Lucent Technologies)

Abstract

Manganese oxides with a perovskite structure1 exhibit a transition between a paramagnetic insulating phase and a ferromagnetic metal phase. Associated with this transition is an effect known as colossal magnetoresistance2–5 (CMR)—in the vicinity of the transition temperature, the materials exhibit a large change in resistance in response to an applied magnetic field. Such an effect, if optimized, might find potential application in magnetic devices. But the criteria for achieving (and hence optimizing) CMR are not clear, presenting a challenge for materials scientists. The accepted description of CMR in the manganite perovskites invokes the 'double-exchange' mechanism, whereby charge transport is enhanced by the magnetic alignment of neighbouring Mn ions of different valence configuration (Mn3+ and Mn4+), and inhibited by the formation of charge-induced localized lattice distortions6,7. Here we report the existence of a large magnetoresistive effect in a class of materials—Cr-based chalcogenide spinels—that do not possess heterovalency, distortion-inducing ions, manganese, oxygen or a perovskite structure. The realization of CMR in compounds having a spinel structure should open up a vast range of materials for the further exploration and exploitation of this effect.

Suggested Citation

  • A. P. Ramirez & R. J. Cava & J. Krajewski, 1997. "Colossal magnetoresistance in Cr-based chalcogenide spinels," Nature, Nature, vol. 386(6621), pages 156-159, March.
  • Handle: RePEc:nat:nature:v:386:y:1997:i:6621:d:10.1038_386156a0
    DOI: 10.1038/386156a0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/386156a0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/386156a0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yanhong Gu & Kevin A. Smith & Amartyajyoti Saha & Chandan De & Choong-jae Won & Yang Zhang & Ling-Fang Lin & Sang-Wook Cheong & Kristjan Haule & Mykhaylo Ozerov & Turan Birol & Christopher Homes & Elb, 2024. "Unconventional insulator-to-metal phase transition in Mn3Si2Te6," Nature Communications, Nature, vol. 15(1), pages 1-6, December.
    2. Kitae Eom & Bongwook Chung & Sehoon Oh & Hua Zhou & Jinsol Seo & Sang Ho Oh & Jinhyuk Jang & Si-Young Choi & Minsu Choi & Ilwan Seo & Yun Sang Lee & Youngmin Kim & Hyungwoo Lee & Jung-Woo Lee & Kyoung, 2024. "Surface triggered stabilization of metastable charge-ordered phase in SrTiO3," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Saizheng Cao & Chenchao Xu & Hiroshi Fukui & Taishun Manjo & Ying Dong & Ming Shi & Yang Liu & Chao Cao & Yu Song, 2023. "Competing charge-density wave instabilities in the kagome metal ScV6Sn6," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Younsik Kim & Min-Seok Kim & Dongwook Kim & Minjae Kim & Minsoo Kim & Cheng-Maw Cheng & Joonyoung Choi & Saegyeol Jung & Donghui Lu & Jong Hyuk Kim & Soohyun Cho & Dongjoon Song & Dongjin Oh & Li Yu &, 2023. "Kondo interaction in FeTe and its potential role in the magnetic order," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. J. Diaz & K. Wang & J. Straquadine & C. Putzke & Qun Yang & Binghai Yan & S. L. Bud’ko & P. C. Canfield & P. J. W. Moll, 2024. "Semi-classical origin of the extreme magnetoresistance in PtSn4," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    6. Yiwen Zhang & Bo Xie & Yue Yang & Yueshen Wu & Xin Lu & Yuxiong Hu & Yifan Ding & Jiadian He & Peng Dong & Jinghui Wang & Xiang Zhou & Jianpeng Liu & Zhu-Jun Wang & Jun Li, 2024. "Extremely large magnetoresistance in twisted intertwined graphene spirals," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:386:y:1997:i:6621:d:10.1038_386156a0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.