IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v385y1997i6618d10.1038_385725a0.html
   My bibliography  Save this article

Mechanism of odorant adaptation in the olfactory receptor cell

Author

Listed:
  • Takashi Kurahashi

    (National Institute for Physiological Sciences
    Osaka University)

  • Anna Menini

    (Consiglio Nazionale delle Ricerche)

Abstract

Adaptation to odorants begins at the level of sensory receptor cells1–5, presumably through modulation of their transduction machinery. The olfactory signal transduction involves the activation of the adenylyl cyclase/cyclic AMP second messenger system which leads to the sequential opening of cAMP-gated channels and Ca2+ -activated chloride ion channels4–7. Several reports of results obtained from in vitro preparations describe the possible molecular mechanisms involved in odorant adaptation; namely, ordorant receptor phosphorylation8,9, activation of phosphodiesterase10, and ion channel regulation11–14. However, it is still unknown whether these putative mechanisms work in the intact olfactory receptor cell. Here we investigate the nature of the adaptational mechanism in intact olfactory cells by using a combination of odorant stimulation and caged cAMP photolysis15 which produces current responses that bypass the early stages of signal transduction (involving the receptor, G protein and adenylyl cyclase). Odorant- and cAMP-induced responses showed the same adaptation in a Ca2+ -dependent manner, indicating that adaptation occurs entirely downstream of the cyclase. Moreover, we show that phosphodiesterase activity remains constant during adaptation and that an affinity change of the cAMP-gated channel for ligands accounts well for our results. We conclude that the principal mechanism underlying odorant adaptation is actually a modulation of the cAMP-gated channel by Ca2+ feedback.

Suggested Citation

  • Takashi Kurahashi & Anna Menini, 1997. "Mechanism of odorant adaptation in the olfactory receptor cell," Nature, Nature, vol. 385(6618), pages 725-729, February.
  • Handle: RePEc:nat:nature:v:385:y:1997:i:6618:d:10.1038_385725a0
    DOI: 10.1038/385725a0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/385725a0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/385725a0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kirstin Meyer & Nicholas C. Lammers & Lukasz J. Bugaj & Hernan G. Garcia & Orion D. Weiner, 2023. "Optogenetic control of YAP reveals a dynamic communication code for stem cell fate and proliferation," Nature Communications, Nature, vol. 14(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:385:y:1997:i:6618:d:10.1038_385725a0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.