IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v385y1997i6617d10.1038_385602a0.html
   My bibliography  Save this article

Crystal structure of the Src family tyrosine kinase Hck

Author

Listed:
  • Frank Sicheri
  • Ismail Moarefi

    (The Rockefeller University
    The Rockefeller University)

  • John Kuriyan

    (The Rockefeller University
    The Rockefeller University)

Abstract

The crystal structure of the haematopoietic cell kinase Hck has been determined at 2.6/2.9 Å resolution. Inhibition of enzymatic activity is a consequence of intramolecular interactions of the enzyme's Src-homology domains SH2 and SH3, with concomitant displacement of elements of the catalytic domain. The conformation of the active site has similarities with that of inactive cyclin-dependent protein kinases.

Suggested Citation

  • Frank Sicheri & Ismail Moarefi & John Kuriyan, 1997. "Crystal structure of the Src family tyrosine kinase Hck," Nature, Nature, vol. 385(6617), pages 602-609, February.
  • Handle: RePEc:nat:nature:v:385:y:1997:i:6617:d:10.1038_385602a0
    DOI: 10.1038/385602a0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/385602a0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/385602a0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sichun Yang & Benoît Roux, 2008. "Src Kinase Conformational Activation: Thermodynamics, Pathways, and Mechanisms," PLOS Computational Biology, Public Library of Science, vol. 4(3), pages 1-14, March.
    2. Nicole Dölker & Maria W Górna & Ludovico Sutto & Antonio S Torralba & Giulio Superti-Furga & Francesco L Gervasio, 2014. "The SH2 Domain Regulates c-Abl Kinase Activation by a Cyclin-Like Mechanism and Remodulation of the Hinge Motion," PLOS Computational Biology, Public Library of Science, vol. 10(10), pages 1-12, October.
    3. Trayder Thomas & Benoît Roux, 2021. "Tyrosine kinases: complex molecular systems challenging computational methodologies," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(10), pages 1-13, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:385:y:1997:i:6617:d:10.1038_385602a0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.