IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v385y1997i6616d10.1038_385525a0.html
   My bibliography  Save this article

Female infertility in mice lacking connexin 37

Author

Listed:
  • Alexander M. Simon

    (Harvard Medical School
    Harvard Medical School)

  • Daniel A. Goodenough
  • En Li

    (Mass General Hospital East)

  • David L. Paul

    (Harvard Medical School
    Harvard Medical School)

Abstract

The signals regulating ovarian follicle development and the mechanisms by which they are communicated are largely undefined1. At birth, the ovary contains primordial follicles consisting of meiotically arrested oocytes surrounded by a single layer of supporting (granulosa) cells. Periodically, subsets of primordial follicles undergo further development during which the oocyte increases in size and the granulosa cells proliferate, stratify and develop a fluid-filled antrum. After ovulation, oocytes resume meiosis and granulosa cells retained in the follicle differentiate into steroidogenic cells, forming the corpus luteum1,2. It has been proposed that intercellular signalling through gap junction channels may influence aspects of follicular development3,4. Gap junctions are aggregations of intercellular channels composed of connexins, a family of at least 13 related proteins that directly connect adjacent cells allowing the diffusional movement of ions, metabolites, and other potential signalling molecules5. Here we show that connexin 37 is present in gap junctions between oocyte and granulosa cells and that connexin-37-deficient mice lack mature (Graafian) follicles, fail to ovulate and develop numerous inappropriate corpora lutea. In addition, oocyte development arrests before meiotic competence is achieved. Thus, cell–cell signalling through intercellular channels critically regulates the highly coordinated set of cellular interactions required for successful oogenesis and ovulation.

Suggested Citation

  • Alexander M. Simon & Daniel A. Goodenough & En Li & David L. Paul, 1997. "Female infertility in mice lacking connexin 37," Nature, Nature, vol. 385(6616), pages 525-529, February.
  • Handle: RePEc:nat:nature:v:385:y:1997:i:6616:d:10.1038_385525a0
    DOI: 10.1038/385525a0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/385525a0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/385525a0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nicholas W. Chavkin & Gael Genet & Mathilde Poulet & Erin D. Jeffery & Corina Marziano & Nafiisha Genet & Hema Vasavada & Elizabeth A. Nelson & Bipul R. Acharya & Anupreet Kour & Jordon Aragon & Steph, 2022. "Endothelial cell cycle state determines propensity for arterial-venous fate," Nature Communications, Nature, vol. 13(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:385:y:1997:i:6616:d:10.1038_385525a0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.