Author
Listed:
- Xulong Chen
(Tianjin University
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin))
- Wenping Hu
(Tianjin University
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
Haihe Laboratory of Sustainable Chemical Transformations
International Campus of Tianjin University)
Abstract
Rubidium (Rb) is a valuable rare alkali metal that plays a crucial role in various high-tech applications, but extracting Rb from conventional sources poses sustainability challenges. A considerable amount of Rb is found in potassium chloride (KCl) salts, which can serve as a sustainable source depending on the extraction methods. Current liquid-phase methods are problematic due to the low Rb/K separation factor and high consumption of energy, water and chemicals. Extracting Rb directly from solid KCl salts is a promising approach, but achieving efficient recovery remains a challenge. Here we propose a crystal ripening microextraction strategy that enables in situ extraction of Rb from solid KCl salts with high selectivity, simplicity and high efficiency. By applying this strategy, we recovered 92.37% of Rb from KCl salts with an initial Rb content of 113 ppm. Compared with liquid-phase extraction, our approach results in a 97.57% reduction in energy consumption, a 22.24% increase in recovery efficiency and a 13.46-fold higher Rb/K separation factor, which substantially enhance environmental and economic benefits. In addition, this approach is suitable for recovering other target metals needed for various industrial applications directly from different solid metallic salts, providing a pathway to improve the sustainability of critical metal supply.
Suggested Citation
Xulong Chen & Wenping Hu, 2024.
"Direct and efficient in situ rubidium extraction from potassium chloride salts,"
Nature Sustainability, Nature, vol. 7(12), pages 1672-1680, December.
Handle:
RePEc:nat:natsus:v:7:y:2024:i:12:d:10.1038_s41893-024-01449-w
DOI: 10.1038/s41893-024-01449-w
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natsus:v:7:y:2024:i:12:d:10.1038_s41893-024-01449-w. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.