IDEAS home Printed from https://ideas.repec.org/a/nat/natsus/v6y2023i7d10.1038_s41893-023-01083-y.html
   My bibliography  Save this article

Mechanochemical processing of silicate rocks to trap CO2

Author

Listed:
  • Mark Stillings

    (University of Strathclyde)

  • Zoe K. Shipton

    (University of Strathclyde)

  • Rebecca J. Lunn

    (University of Strathclyde)

Abstract

Milling minerals rich in magnesium and iron within CO2 gas has been proposed to capture carbon as metal-carbonates. We conduct milling experiments in CO2 and show that polymineralic rocks such as granite and basalt, whether high or low in carbonate-forming metals, are more efficient at trapping CO2 than individual minerals. This is because the trapping process is not, as previously thought, based on the carbonation of carbonate-forming metals. Instead, CO2 is chemically adsorbed into the crystal structure, predominantly at the boundaries between different minerals. Leaching experiments on the milled mineral/rock powders show that CO2 trapped in single minerals is mainly soluble, whereas CO2 trapped in polymineralic rocks is not. Under ambient temperature conditions, polymineralic rocks can capture >13.4 mgCO2 g−1 as thermally stable, insoluble CO2. Polymineralic rocks are crushed worldwide to produce construction aggregate. If crushing processes could be conducted within a stream of effluent CO2 gas (as produced from cement manufacture), our findings suggest that for every 100 Mt of hard rock aggregate sold, 0.4–0.5 MtCO2 could be captured as a by-product.

Suggested Citation

  • Mark Stillings & Zoe K. Shipton & Rebecca J. Lunn, 2023. "Mechanochemical processing of silicate rocks to trap CO2," Nature Sustainability, Nature, vol. 6(7), pages 780-788, July.
  • Handle: RePEc:nat:natsus:v:6:y:2023:i:7:d:10.1038_s41893-023-01083-y
    DOI: 10.1038/s41893-023-01083-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41893-023-01083-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41893-023-01083-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natsus:v:6:y:2023:i:7:d:10.1038_s41893-023-01083-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.