IDEAS home Printed from https://ideas.repec.org/a/nat/natsus/v4y2021i5d10.1038_s41893-020-00665-4.html
   My bibliography  Save this article

Safeguarding migratory fish via strategic planning of future small hydropower in Brazil

Author

Listed:
  • Thiago B. A. Couto

    (University of Washington
    Florida International University)

  • Mathis L. Messager

    (University of Washington
    McGill University
    UR RiverLy, Lyon-Villeurbanne Centre, National Research Institute for Agriculture, Food and Environment (INRAE))

  • Julian D. Olden

    (University of Washington)

Abstract

Small hydropower plants (SHPs) are proliferating globally, but their cumulative threat to blocking migratory fish and the fisheries that these fish sustain has been underappreciated when compared with large hydropower plants (LHPs). Here, we quantified the trade-offs between hydroelectric generation capacity and the impacts on river connectivity for thousands of current and projected future dams across Brazil. SHPs are the main source of river fragmentation, resulting in average connectivity losses of fourfold greater than LHPs. Fragmentation by SHPs is projected to increase by 21% in the future, and two-thirds of the 191 migratory species assessed occupy basins that will experience greater connectivity losses due to SHPs than LHPs. A Pareto frontier analysis identified future dam portfolios that could halve the number of hydropower plants that are required to deliver the same energy-generation capacity compared with the least-favourable solutions, while simultaneously resulting in lower river fragmentation and protecting numerous undammed basins. Our results highlight the need for strategic planning that considers the unprecedented growth and cumulative effects of SHPs.

Suggested Citation

  • Thiago B. A. Couto & Mathis L. Messager & Julian D. Olden, 2021. "Safeguarding migratory fish via strategic planning of future small hydropower in Brazil," Nature Sustainability, Nature, vol. 4(5), pages 409-416, May.
  • Handle: RePEc:nat:natsus:v:4:y:2021:i:5:d:10.1038_s41893-020-00665-4
    DOI: 10.1038/s41893-020-00665-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41893-020-00665-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41893-020-00665-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Garrett, Kayla P. & McManamay, Ryan A. & Witt, Adam, 2023. "Harnessing the power of environmental flows: Sustaining river ecosystem integrity while increasing energy potential at hydropower dams," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natsus:v:4:y:2021:i:5:d:10.1038_s41893-020-00665-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.