IDEAS home Printed from https://ideas.repec.org/a/nat/natsus/v4y2021i10d10.1038_s41893-021-00743-1.html
   My bibliography  Save this article

Hydroplastic polymers as eco-friendly hydrosetting plastics

Author

Listed:
  • Jiaxiu Wang

    (Georg-August-University of Göttingen)

  • Lukas Emmerich

    (Georg-August-University of Göttingen)

  • Jianfeng Wu

    (Northwestern Polytechnical University)

  • Philipp Vana

    (Georg-August-University of Göttingen)

  • Kai Zhang

    (Georg-August-University of Göttingen)

Abstract

Despite the considerable benefits plastics have offered, the current approaches to their production, use and disposal are not sustainable and pose a serious threat to the environment and human health. Eco-friendly processing of plastics could form part of the solutions; however, the technological challenge remains thorny. Here, we report a sustainable hydrosetting method for the processing of a hydroplastic polymer—cellulose cinnamate. Synthesized via facile solvent casting, the transparent cellulose cinnamate membranes are mechanically robust, with tensile strength of 92.4 MPa and Young’s modulus of 2.6 GPa, which exceed those of most common plastics. These bio-based planar membranes can be processed into either two-dimensional (2D) or three-dimensional (3D) shapes by using their hydroplastic properties (using water to manipulate the plasticity). These desired shapes maintain stability for >16 months and can be repeatedly reprogrammed into other 2D/3D shapes, substantially extending their lifetime for practical applications.

Suggested Citation

  • Jiaxiu Wang & Lukas Emmerich & Jianfeng Wu & Philipp Vana & Kai Zhang, 2021. "Hydroplastic polymers as eco-friendly hydrosetting plastics," Nature Sustainability, Nature, vol. 4(10), pages 877-883, October.
  • Handle: RePEc:nat:natsus:v:4:y:2021:i:10:d:10.1038_s41893-021-00743-1
    DOI: 10.1038/s41893-021-00743-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41893-021-00743-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41893-021-00743-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bowen Sui & Youliang Zhu & Xuemei Jiang & Yifan Wang & Niboqia Zhang & Zhongyuan Lu & Bai Yang & Yunfeng Li, 2023. "Recastable assemblies of carbon dots into mechanically robust macroscopic materials," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natsus:v:4:y:2021:i:10:d:10.1038_s41893-021-00743-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.