IDEAS home Printed from https://ideas.repec.org/a/nat/natsus/v3y2020i4d10.1038_s41893-020-0478-9.html
   My bibliography  Save this article

Using yeast to sustainably remediate and extract heavy metals from waste waters

Author

Listed:
  • George L. Sun

    (Massachusetts Institute of Technology
    Massachusetts Institute of Technology)

  • Erin. E. Reynolds

    (Massachusetts Institute of Technology)

  • Angela M. Belcher

    (Massachusetts Institute of Technology
    Massachusetts Institute of Technology
    Massachusetts Institute of Technology)

Abstract

Our demand for electronic goods and fossil fuels has challenged our ecosystem with contaminating amounts of heavy metals, causing numerous water sources to become polluted. To counter heavy-metal waste, industry has relied on a family of physicochemical processes, with chemical precipitation being one of the most commonly used. However, the disadvantages of chemical precipitation are vast, including the generation of secondary waste, technical handling of chemicals and need for complex infrastructures. To circumvent these limitations, biological processes to naturally manage waste have been sought. Here, we show that yeast can act as a biological alternative to traditional chemical precipitation by controlling naturally occurring production of hydrogen sulfide (H2S). Sulfide production was harnessed by controlling the sulfate assimilation pathway, where strategic knockouts and culture conditions generated H2S from 0 to over 1,000 ppm (~30 mM). These sulfide-producing yeasts were able to remove mercury, lead and copper from real-world samples taken from the Athabasca oil sands. More so, yeast surface display of biomineralization peptides helped control for size distribution and crystallinity of precipitated metal sulfide nanoparticles. Altogether, this yeast-based platform not only removes heavy metals but also offers a platform for metal re-extraction through precipitation of metal sulfide nanoparticles.

Suggested Citation

  • George L. Sun & Erin. E. Reynolds & Angela M. Belcher, 2020. "Using yeast to sustainably remediate and extract heavy metals from waste waters," Nature Sustainability, Nature, vol. 3(4), pages 303-311, April.
  • Handle: RePEc:nat:natsus:v:3:y:2020:i:4:d:10.1038_s41893-020-0478-9
    DOI: 10.1038/s41893-020-0478-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41893-020-0478-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41893-020-0478-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Harper, Gavin D.J. & Kendrick, Emma & Anderson, Paul A. & Mrozik, Wojciech & Christensen, Paul & Lambert, Simon & Greenwood, David & Das, Prodip K. & Ahmeid, Mohamed & Milojevic, Zoran & Du, Wenjia & , 2023. "Roadmap for a sustainable circular economy in lithium-ion and future battery technologies," LSE Research Online Documents on Economics 118420, London School of Economics and Political Science, LSE Library.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natsus:v:3:y:2020:i:4:d:10.1038_s41893-020-0478-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.