IDEAS home Printed from https://ideas.repec.org/a/nat/natsus/v3y2020i11d10.1038_s41893-020-0559-9.html
   My bibliography  Save this article

Increasing dependence of lowland populations on mountain water resources

Author

Listed:
  • Daniel Viviroli

    (University of Zürich)

  • Matti Kummu

    (Aalto University)

  • Michel Meybeck

    (Sorbonne Université)

  • Marko Kallio

    (Aalto University
    Aalto University)

  • Yoshihide Wada

    (International Institute for Applied Systems Analysis
    Utrecht University)

Abstract

Mountain areas provide disproportionally high runoff in many parts of the world, but their importance for water resources and food production has not been clarified from the viewpoint of the lowland areas downstream. Here we quantify the extent to which lowland inhabitants potentially depend on runoff contributions from mountain areas (39% of the global land mass). We show that ~1.5 billion people (24% of the world’s lowland population) are projected to depend critically on runoff contributions from mountains by the mid-twenty-first century under a ‘middle of the road’ scenario, compared with ~0.2 billion (7%) in the 1960s. This striking rise is mainly due to increased local water consumption in the lowlands, whereas changes in mountain and lowland runoff play only a minor role. We further show that one-third of the global lowland area equipped for irrigation is currently located in regions that both depend heavily on runoff contributions from mountains and make unsustainable use of local blue water resources, a figure that is likely to rise to well over 50% in the coming decades. Our findings imply that mountain areas should receive particular attention in water resources management and underscore the protection they deserve in efforts towards sustainable development.

Suggested Citation

  • Daniel Viviroli & Matti Kummu & Michel Meybeck & Marko Kallio & Yoshihide Wada, 2020. "Increasing dependence of lowland populations on mountain water resources," Nature Sustainability, Nature, vol. 3(11), pages 917-928, November.
  • Handle: RePEc:nat:natsus:v:3:y:2020:i:11:d:10.1038_s41893-020-0559-9
    DOI: 10.1038/s41893-020-0559-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41893-020-0559-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41893-020-0559-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chao Yang & Huizeng Liu & Qingquan Li & Xuqing Wang & Wei Ma & Cuiling Liu & Xu Fang & Yuzhi Tang & Tiezhu Shi & Qibiao Wang & Yue Xu & Jie Zhang & Xuecao Li & Gang Xu & Junyi Chen & Mo Su & Shuying W, 2022. "Human expansion into Asian highlands in the 21st Century and its effects," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Peña‐Guerrero, Mayra Daniela & Umirbekov, Atabek & Tarasova, Larisa & Müller, Daniel, 2022. "Comparing the performance of high‐resolution global precipitation products across topographic and climatic gradients of Central Asia," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 42(11), pages 5554-5569.
    3. Vikram S. Negi & Deep C. Tiwari & Laxman Singh & Shinny Thakur & Indra D. Bhatt, 2022. "Review and synthesis of climate change studies in the Himalayan region," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(9), pages 10471-10502, September.
    4. Oliver Reader, M. & Eppinga, Maarten B. & de Boer, Hugo J. & Petchey, Owen L. & Santos, Maria J., 2024. "Consistent ecosystem service bundles emerge across global mountain, island and delta systems," Ecosystem Services, Elsevier, vol. 66(C).
    5. Jinglin Zhang & Wei Zhang & Shiwei Liu & Weiming Kong & Wei Zhang, 2022. "Cryosphere Services to Advance the National SDG Priorities in Himalaya-Karakoram Region," Sustainability, MDPI, vol. 14(5), pages 1-16, February.
    6. Veruska Muccione & Julia Aguilera Rodriguez & Anna Scolobig & Rosie Witton & Johanna Zwahlen & Alex Mackey & Julia Barrott & Otto Simonett & Markus Stoffel & Simon K. Allen, 2024. "Trends in climate adaptation solutions for mountain regions," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 29(7), pages 1-22, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natsus:v:3:y:2020:i:11:d:10.1038_s41893-020-0559-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.