IDEAS home Printed from https://ideas.repec.org/a/nat/natsus/v2y2019i9d10.1038_s41893-019-0373-4.html
   My bibliography  Save this article

Microstructure and surface control of MXene films for water purification

Author

Listed:
  • Xiuqiang Xie

    (Fuzhou University
    Fuzhou University)

  • Chi Chen

    (Huazhong University of Science and Technology)

  • Nan Zhang

    (Fuzhou University
    Fuzhou University)

  • Zi-Rong Tang

    (Fuzhou University)

  • Jianjun Jiang

    (Huazhong University of Science and Technology)

  • Yi-Jun Xu

    (Fuzhou University
    Fuzhou University)

Abstract

Heavy metal ions (HMIs), such as those containing chromate and arsenic, are toxic and need to be removed from drinking water to protect public health. Films based on two-dimensional materials are promising regarding the removal of HMIs from water, but they typically use pressure-driven filtration. This study reports the application of two-dimensional titanium carbide (Ti3C2Tx MXene)-based films for pressure-free removal of multiple negatively and positively charged HMIs from water. The Ti3C2Tx MXene-based film’s microstructure was optimized by insertion of reduced graphene oxide between the layers, and the film’s surface was progressively hydroxylated to increase the accessibility of Ti3C2Tx, improve the film’s wettability and enhance the adsorption and reduction of HMIs. These steps synergistically improved the film’s HMI removal efficiency. This study provides a straightforward paradigm to manipulate the pivotal solid–liquid interactions for water purification under pressure-free conditions using two-dimensional materials-based films. Moreover, it could open a new vista of rationally designed, versatile, Ti3C2Tx-based films for target applications.

Suggested Citation

  • Xiuqiang Xie & Chi Chen & Nan Zhang & Zi-Rong Tang & Jianjun Jiang & Yi-Jun Xu, 2019. "Microstructure and surface control of MXene films for water purification," Nature Sustainability, Nature, vol. 2(9), pages 856-862, September.
  • Handle: RePEc:nat:natsus:v:2:y:2019:i:9:d:10.1038_s41893-019-0373-4
    DOI: 10.1038/s41893-019-0373-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41893-019-0373-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41893-019-0373-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rezakazemi, Mashallah & Arabi Shamsabadi, Ahmad & Lin, Haiqing & Luis, Patricia & Ramakrishna, Seeram & Aminabhavi, Tejraj M., 2021. "Sustainable MXenes-based membranes for highly energy-efficient separations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    2. Xinming Xia & Feng Zhou & Jing Xu & Zhongteng Wang & Jian Lan & Yan Fan & Zhikun Wang & Wei Liu & Junlang Chen & Shangshen Feng & Yusong Tu & Yizhou Yang & Liang Chen & Haiping Fang, 2022. "Unexpectedly efficient ion desorption of graphene-based materials," Nature Communications, Nature, vol. 13(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natsus:v:2:y:2019:i:9:d:10.1038_s41893-019-0373-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.