IDEAS home Printed from https://ideas.repec.org/a/nat/natsus/v2y2019i5d10.1038_s41893-019-0275-5.html
   My bibliography  Save this article

Weighing the benefits of expanding protected areas versus managing existing ones

Author

Listed:
  • Vanessa M. Adams

    (University of Queensland
    University of Tasmania)

  • Gwenllian D. Iacona

    (University of Queensland)

  • Hugh P. Possingham

    (University of Queensland
    The Nature Conservancy)

Abstract

Protected areas are a fundamental mechanism for conserving global biodiversity. Given limited conservation funds and shortfalls in funding for existing protected area management needs, a critical question is: should countries and states spend new funds on purchasing more land or managing existing protected areas to an acceptable standard? We used a non-spatial dynamic landscape model to compare the relative importance of expansion of protected areas versus improved protected area management in diverse contexts. We provide guidance on how to allocate funding across these two actions, and the order in which these actions should be prioritized. We discover that, in contrast with spending patterns, which focus on expansion rather than management, management is often the better first investment. The relative priority of expansion and management is determined by observable factors: the relative costs of the two actions and rates of degradation in protected and unprotected areas. Importantly, regardless of these factors, the final recommended action is always to split the budget across expansion and management such that there is adequate money for management. This highlights that, while our existing protected areas are an important asset, increased investment in management is essential to maximize their potential to protect biodiversity.

Suggested Citation

  • Vanessa M. Adams & Gwenllian D. Iacona & Hugh P. Possingham, 2019. "Weighing the benefits of expanding protected areas versus managing existing ones," Nature Sustainability, Nature, vol. 2(5), pages 404-411, May.
  • Handle: RePEc:nat:natsus:v:2:y:2019:i:5:d:10.1038_s41893-019-0275-5
    DOI: 10.1038/s41893-019-0275-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41893-019-0275-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41893-019-0275-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. H. J. Albers & L. Preonas & T. Capitán & E. J. Z. Robinson & R. Madrigal-Ballestero, 2020. "Optimal Siting, Sizing, and Enforcement of Marine Protected Areas," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 77(1), pages 229-269, September.
    2. Weerasena, Lakmali & Shier, Douglas & Tonkyn, David & McFeaters, Mark & Collins, Christopher, 2023. "A sequential approach to reserve design with compactness and contiguity considerations," Ecological Modelling, Elsevier, vol. 478(C).
    3. Venn, Tyron J., 2023. "Reconciling timber harvesting, biodiversity conservation and carbon sequestration in Queensland, Australia," Forest Policy and Economics, Elsevier, vol. 152(C).
    4. Li, Shicheng & Zhang, Heng & Zhou, Xuewu & Yu, Haibin & Li, Wangjun, 2020. "Enhancing protected areas for biodiversity and ecosystem services in the Qinghai–Tibet Plateau," Ecosystem Services, Elsevier, vol. 43(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natsus:v:2:y:2019:i:5:d:10.1038_s41893-019-0275-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.