IDEAS home Printed from https://ideas.repec.org/a/nat/natsus/v2y2019i3d10.1038_s41893-019-0242-1.html
   My bibliography  Save this article

The impact of nutrient-rich food choices on agricultural water-use efficiency

Author

Listed:
  • Kerstin Damerau

    (Harvard University Center for the Environment)

  • Katharina Waha

    (Commonwealth Scientific and Industrial Research Organisation)

  • Mario Herrero

    (Commonwealth Scientific and Industrial Research Organisation)

Abstract

When distributed equally, the total amount of food produced worldwide could sufficiently meet current global demand. Still, malnutrition in the form of nutrient deficiencies continues to prevail in both low- and high-income countries. At the same time, natural resource use for agriculture is reaching or exceeding environmental boundaries. By integrating a comprehensive micronutrient scoring method with data on agricultural water demand, this analysis aims to re-evaluate the global water-use efficiency of dietary nutrient production. A stronger reliance on more nutrient-dense foods could lead to higher water-use efficiencies, though dietary water footprints were likely to increase overall. With a more detailed focus on plant and animal foods, we find that most dietary protein sources show comparable water-use efficiencies, and thus can be drivers for agricultural water demand. Animal foods, besides having a unique nutrient profile, often do not compete directly with crops for the same water resources. However, a significant reduction in the demand for utilizable freshwater resources could be achieved by reducing the amount of feed crops in ruminant diets.

Suggested Citation

  • Kerstin Damerau & Katharina Waha & Mario Herrero, 2019. "The impact of nutrient-rich food choices on agricultural water-use efficiency," Nature Sustainability, Nature, vol. 2(3), pages 233-241, March.
  • Handle: RePEc:nat:natsus:v:2:y:2019:i:3:d:10.1038_s41893-019-0242-1
    DOI: 10.1038/s41893-019-0242-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41893-019-0242-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41893-019-0242-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Wenjia & Gao, Yanming & Tian, Yongqiang & Li, Jianshe, 2022. "Double-root-grafting enhances irrigation water efficiency and reduces the adverse effects of saline water on tomato yields under alternate partial root-zone irrigation," Agricultural Water Management, Elsevier, vol. 264(C).
    2. Xian Liu & Yueyue Xu & Shikun Sun & Xining Zhao & Yubao Wang, 2022. "Analysis of the Coupling Characteristics of Water Resources and Food Security: The Case of Northwest China," Agriculture, MDPI, vol. 12(8), pages 1-19, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natsus:v:2:y:2019:i:3:d:10.1038_s41893-019-0242-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.