IDEAS home Printed from https://ideas.repec.org/a/nat/natsus/v2y2019i12d10.1038_s41893-019-0418-8.html
   My bibliography  Save this article

Integrated scenarios to support analysis of the food–energy–water nexus

Author

Listed:
  • Detlef P. Van Vuuren

    (Utrecht University
    PBL Netherlands Environmental Assessment Agency)

  • David L. Bijl

    (Utrecht University)

  • Patrick Bogaart

    (Utrecht University
    Statistics Netherlands)

  • Elke Stehfest

    (PBL Netherlands Environmental Assessment Agency)

  • Hester Biemans

    (Wageningen University and Research)

  • Stefan C. Dekker

    (Utrecht University)

  • Jonathan C. Doelman

    (PBL Netherlands Environmental Assessment Agency)

  • David E. H. J. Gernaat

    (Utrecht University
    PBL Netherlands Environmental Assessment Agency)

  • Mathijs Harmsen

    (Utrecht University
    PBL Netherlands Environmental Assessment Agency)

Abstract

The literature emphasizes the important relationships between the consumption and production of food, energy and water, and environmental challenges such as climate change and loss of biodiversity. New tools are needed to analyse the future dynamics of this nexus. Here, we introduce a set of model-based scenarios and associated Sankey diagrams that enable analysis of the relevant relationships and dynamics, as well as the options to formulate response strategies. The scenarios show that if no new policies are adopted, food production and energy generation could further increase by around 60%, and water consumption by around 20% over the period 2015–2050, leading to further degradation of resources and increasing environmental pressure. Response strategies in terms of climate policies, higher agricultural yields, dietary change and reduction of food waste are analysed to reveal how they may contribute to reversing these trends, and possibly even lead to a reduction of land use in the future.

Suggested Citation

  • Detlef P. Van Vuuren & David L. Bijl & Patrick Bogaart & Elke Stehfest & Hester Biemans & Stefan C. Dekker & Jonathan C. Doelman & David E. H. J. Gernaat & Mathijs Harmsen, 2019. "Integrated scenarios to support analysis of the food–energy–water nexus," Nature Sustainability, Nature, vol. 2(12), pages 1132-1141, December.
  • Handle: RePEc:nat:natsus:v:2:y:2019:i:12:d:10.1038_s41893-019-0418-8
    DOI: 10.1038/s41893-019-0418-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41893-019-0418-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41893-019-0418-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Byun, Jaewon & Han, Jee-hoon, 2023. "Economic feasible hydrogen production system from carbohydrate-rich food waste," Applied Energy, Elsevier, vol. 340(C).
    2. Guiyang Zhu & Mabel C. Chou & Christina W. Tsai, 2020. "Lessons Learned from the COVID-19 Pandemic Exposing the Shortcomings of Current Supply Chain Operations: A Long-Term Prescriptive Offering," Sustainability, MDPI, vol. 12(14), pages 1-19, July.
    3. Wang, Xue-Chao & Jiang, Peng & Yang, Lan & Fan, Yee Van & Klemeš, Jiří Jaromír & Wang, Yutao, 2021. "Extended water-energy nexus contribution to environmentally-related sustainable development goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    4. Hu, Yanan & Duan, Weili & Zou, Shan & Chen, Yaning & De Maeyer, Philippe & Van de Voorde, Tim & Takara, Kaoru & Kayumba, Patient Mindje & Kurban, Alishir & Goethals, Peter L.M., 2024. "Coupling coordination analysis of the water-food-energy‑carbon nexus for crop production in Central Asia," Applied Energy, Elsevier, vol. 369(C).
    5. Karimov, Akmal Kh & Toshev, Rashid H. & Karshiev, Rustam & Karimov, Aziz A., 2021. "Water–energy nexus in Central Asia's lift irrigation schemes: Multi-level linkages," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    6. Zhang, Tianyuan & Tan, Qian & Wang, Shuping & Zhang, Tong & Hu, Kejia & Zhang, Shan, 2022. "Assessment and management of composite risk in irrigated agriculture under water-food-energy nexus and uncertainty," Agricultural Water Management, Elsevier, vol. 262(C).
    7. Mongird, Kendall & Rice, Jennie S. & Oikonomou, Konstantinos & Homer, Juliet, 2023. "Energy-water interdependencies across the three major United States electric grids: A multi-sectoral analysis," Utilities Policy, Elsevier, vol. 85(C).
    8. Byun, Jaewon & Han, Jeehoon, 2021. "Economically feasible production of green methane from vegetable and fruit-rich food waste," Energy, Elsevier, vol. 235(C).
    9. Meiqian Chen & Lei Gao & Zhaoxia Guo & Yucheng Dong & Enayat A. Moallemi & Yinfeng Xu & Ke Li & Wenhao Lin & Jing Yang & Weijun Xu & Matteo Pedercini & Brett A. Bryan, 2024. "A cost-effective climate mitigation pathway for China with co-benefits for sustainability," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    10. Lu, Hongfang & Lin, Bin-Le & Campbell, Daniel E. & Wang, Yanjia & Duan, Wenqi & Han, Taotao & Wang, Jun & Ren, Hai, 2022. "Australia-Japan telecoupling of wind power-based green ammonia for passenger transportation: Efficiency, impacts, and sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    11. Stefan C. Dekker & Aletta D. Kraneveld & Jerry van Dijk & Agni Kalfagianni & Andre C. Knulst & Herman Lelieveldt & Ellen H. M. Moors & Eggo Müller & Raymond H. H. Pieters & Corné M. J. Pieterse & Step, 2020. "Towards Healthy Planet Diets—A Transdisciplinary Approach to Food Sustainability Challenges," Challenges, MDPI, vol. 11(2), pages 1-19, September.
    12. Cui, Simeng & Wu, Mengyang & Huang, Xuan & Wang, Xiaojun & Cao, Xinchun, 2022. "Sustainability and assessment of factors driving the water-energy-food nexus in pumped irrigation systems," Agricultural Water Management, Elsevier, vol. 272(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natsus:v:2:y:2019:i:12:d:10.1038_s41893-019-0418-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.