IDEAS home Printed from https://ideas.repec.org/a/nat/nathum/v7y2023i7d10.1038_s41562-023-01601-0.html
   My bibliography  Save this article

Material category of visual objects computed from specular image structure

Author

Listed:
  • Alexandra C. Schmid

    (Justus Liebig University Giessen)

  • Pascal Barla

    (Inria)

  • Katja Doerschner

    (Justus Liebig University Giessen)

Abstract

Recognizing materials and their properties visually is vital for successful interactions with our environment, from avoiding slippery floors to handling fragile objects. Yet there is no simple mapping of retinal image intensities to physical properties. Here, we investigated what image information drives material perception by collecting human psychophysical judgements about complex glossy objects. Variations in specular image structure—produced either by manipulating reflectance properties or visual features directly—caused categorical shifts in material appearance, suggesting that specular reflections provide diagnostic information about a wide range of material classes. Perceived material category appeared to mediate cues for surface gloss, providing evidence against a purely feedforward view of neural processing. Our results suggest that the image structure that triggers our perception of surface gloss plays a direct role in visual categorization, and that the perception and neural processing of stimulus properties should be studied in the context of recognition, not in isolation.

Suggested Citation

  • Alexandra C. Schmid & Pascal Barla & Katja Doerschner, 2023. "Material category of visual objects computed from specular image structure," Nature Human Behaviour, Nature, vol. 7(7), pages 1152-1169, July.
  • Handle: RePEc:nat:nathum:v:7:y:2023:i:7:d:10.1038_s41562-023-01601-0
    DOI: 10.1038/s41562-023-01601-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41562-023-01601-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41562-023-01601-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Masataka Sawayama & Shin'ya Nishida, 2018. "Material and shape perception based on two types of intensity gradient information," PLOS Computational Biology, Public Library of Science, vol. 14(4), pages 1-40, April.
    2. Katherine R. Storrs & Barton L. Anderson & Roland W. Fleming, 2021. "Unsupervised learning predicts human perception and misperception of gloss," Nature Human Behaviour, Nature, vol. 5(10), pages 1402-1417, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Katherine R. Storrs & Barton L. Anderson & Roland W. Fleming, 2021. "Unsupervised learning predicts human perception and misperception of gloss," Nature Human Behaviour, Nature, vol. 5(10), pages 1402-1417, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nathum:v:7:y:2023:i:7:d:10.1038_s41562-023-01601-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.