IDEAS home Printed from https://ideas.repec.org/a/nat/nathum/v1y2017i6d10.1038_s41562-017-0111.html
   My bibliography  Save this article

Dual enhancement mechanisms for overnight motor memory consolidation

Author

Listed:
  • Jocelyn Breton

    (Institute of Neuroscience and Psychology, Centre for Cognitive Neuroimaging, University of Glasgow)

  • Edwin M. Robertson

    (Institute of Neuroscience and Psychology, Centre for Cognitive Neuroimaging, University of Glasgow)

Abstract

Our brains are constantly processing past events1. These offline processes consolidate memories, leading in the case of motor skill memories to an enhancement in performance between training sessions. A similar magnitude of enhancement develops over a night of sleep following an implicit task, in which a sequence of movements is acquired unintentionally, or following an explicit task, in which the same sequence is acquired intentionally2. What remains poorly understood, however, is whether these similar offline improvements are supported by similar circuits, or through distinct circuits. We set out to distinguish between these possibilities by applying transcranial magnetic stimulation over the primary motor cortex (M1) or the inferior parietal lobule (IPL) immediately after learning in either the explicit or implicit task. These brain areas have both been implicated in encoding aspects of a motor sequence and subsequently supporting offline improvements over sleep3–5. Here we show that offline improvements following the explicit task are dependent on a circuit that includes M1 but not IPL. In contrast, offline improvements following the implicit task are dependent on a circuit that includes IPL but not M1. Our work establishes the critical contribution made by M1 and IPL circuits to offline memory processing, and reveals that distinct circuits support similar offline improvements.

Suggested Citation

  • Jocelyn Breton & Edwin M. Robertson, 2017. "Dual enhancement mechanisms for overnight motor memory consolidation," Nature Human Behaviour, Nature, vol. 1(6), pages 1-7, June.
  • Handle: RePEc:nat:nathum:v:1:y:2017:i:6:d:10.1038_s41562-017-0111
    DOI: 10.1038/s41562-017-0111
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41562-017-0111
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41562-017-0111?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tamir Eisenstein & Edna Furman-Haran & Assaf Tal, 2024. "Early excitatory-inhibitory cortical modifications following skill learning are associated with motor memory consolidation and plasticity overnight," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nathum:v:1:y:2017:i:6:d:10.1038_s41562-017-0111. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.