Author
Listed:
- Zeyi Wang
(University of Maryland)
- Jiale Xia
(University of Maryland)
- Xiao Ji
(University of Maryland)
- Yijie Liu
(University of Maryland)
- Jiaxun Zhang
(University of Maryland)
- Xinzi He
(University of Maryland)
- Weiran Zhang
(University of Maryland)
- Hongli Wan
(University of Maryland)
- Chunsheng Wang
(University of Maryland)
Abstract
All-solid-state lithium-metal batteries (ASSLBs) have attracted intense interest due to their high energy density and high safety. However, Li dendrite growth and high interface resistance remain challenging due to insufficient understanding of the mechanism. Here we develop two types of porous lithiophobic interlayer (Li7N2I–carbon nanotube and Li7N2I–Mg) to enable Li to plate at the Li/interlayer interface and reversibly penetrate into the porous interlayer. The experimental and simulation results reveal that a balance of lithiophobicity, electronic and ionic conductivities and interlayer’s porosity are the key enablers for stable Li plating/stripping at a high capacity. A fine-tuned Li7N2I–carbon nanotube interlayer enables Li/LNI/Li symmetric cell to achieve a high critical current density of 4.0 mA cm−2 at 4.0 mAh cm−2 at 25 °C; the Li7N2I–Mg interlayer enables a Li4SiO4@LiNi0.8Mn0.1Co0.1O2/Li6PS5Cl/20 µm-Li full cell to achieve an areal capacity of 2.2 mAh cm−2, maintaining 82.4% capacity retention after 350 cycles at 60 °C at a rate of 0.5 C. The interlayer design principle opens opportunities to develop safe and high energy ASSLBs.
Suggested Citation
Zeyi Wang & Jiale Xia & Xiao Ji & Yijie Liu & Jiaxun Zhang & Xinzi He & Weiran Zhang & Hongli Wan & Chunsheng Wang, 2024.
"Lithium anode interlayer design for all-solid-state lithium-metal batteries,"
Nature Energy, Nature, vol. 9(3), pages 251-262, March.
Handle:
RePEc:nat:natene:v:9:y:2024:i:3:d:10.1038_s41560-023-01426-1
DOI: 10.1038/s41560-023-01426-1
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natene:v:9:y:2024:i:3:d:10.1038_s41560-023-01426-1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.