IDEAS home Printed from https://ideas.repec.org/a/nat/natene/v8y2023i9d10.1038_s41560-023-01333-5.html
   My bibliography  Save this article

Issues impeding the commercialization of laboratory innovations for energy-dense Si-containing lithium-ion batteries

Author

Listed:
  • Namhyung Kim

    (Ulsan National Institute of Science and Technology (UNIST)
    Pacific Northwest National Laboratory (PNNL))

  • Yujin Kim

    (Ulsan National Institute of Science and Technology (UNIST))

  • Jaekyung Sung

    (Gyeongsang National University)

  • Jaephil Cho

    (Ulsan National Institute of Science and Technology (UNIST))

Abstract

Silicon is a promising alternative to the conventional graphite anode in high-energy lithium-ion batteries owing to its high gravimetric capacity. However, intrinsic issues, such as severe volume expansion during cycling, have plagued the development of batteries that use Si anodes. While tremendous progress has been made in laboratories to tackle these issues, most Si-containing batteries in industry, in which Si anodes are made of Si suboxides or Si–C composites, can use only a very limited amount of Si. Here we review important factors that affect the practical energy density of Si-containing batteries, including electrode swelling and cut-off voltage in cell operation. We also discuss calendar life, safety and cost issues, which also have a strong influence on practical cell design. Furthermore, we propose testing protocols to evaluate the practical viability of newly developed Si anodes.

Suggested Citation

  • Namhyung Kim & Yujin Kim & Jaekyung Sung & Jaephil Cho, 2023. "Issues impeding the commercialization of laboratory innovations for energy-dense Si-containing lithium-ion batteries," Nature Energy, Nature, vol. 8(9), pages 921-933, September.
  • Handle: RePEc:nat:natene:v:8:y:2023:i:9:d:10.1038_s41560-023-01333-5
    DOI: 10.1038/s41560-023-01333-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41560-023-01333-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41560-023-01333-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Imanol Landa-Medrano & Idoia Urdampilleta & Iker Castrillo & Hans-Jürgen Grande & Iratxe de Meatza & Aitor Eguia-Barrio, 2024. "Making Room for Silicon: Including SiO x in a Graphite-Based Anode Formulation and Harmonization in 1 Ah Cells," Energies, MDPI, vol. 17(7), pages 1-21, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natene:v:8:y:2023:i:9:d:10.1038_s41560-023-01333-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.