IDEAS home Printed from https://ideas.repec.org/a/nat/natene/v8y2023i11d10.1038_s41560-023-01356-y.html
   My bibliography  Save this article

Inorganic glass electrolytes with polymer-like viscoelasticity

Author

Listed:
  • Tao Dai

    (Chinese Academy of Sciences)

  • Siyuan Wu

    (Chinese Academy of Sciences)

  • Yaxiang Lu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    Chinese Academy of Sciences
    Yangtze River Delta Physics Research Center Co. Ltd.)

  • Yang Yang

    (Chinese Academy of Sciences)

  • Yuan Liu

    (Chinese Academy of Sciences)

  • Chao Chang

    (Chinese Academy of Sciences)

  • Xiaohui Rong

    (Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Ruijuan Xiao

    (Chinese Academy of Sciences)

  • Junmei Zhao

    (Chinese Academy of Sciences)

  • Yanhui Liu

    (Chinese Academy of Sciences)

  • Weihua Wang

    (Chinese Academy of Sciences)

  • Liquan Chen

    (Chinese Academy of Sciences)

  • Yong-Sheng Hu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    Chinese Academy of Sciences
    Yangtze River Delta Physics Research Center Co. Ltd.)

Abstract

Solid-state batteries offer an alternative promising power source for electric vehicles. However, the interfacial mechanical stability of inorganic electrolytes is inferior to that of organic electrolytes. A high stack pressure (several to hundreds of megapascals) is often required to maintain intimate contact with electrodes. Here we report a class of viscoelastic inorganic glass (VIGLAS) to serve as solid electrolytes by simply replacing chlorine of tetrachloroaluminates with oxygen. The VIGLAS possesses high ionic conductivity (~1 mS cm−1 at 30 °C) for both Li+ and Na+, superior chemo-mechanical compatibility with 4.3 V cathodes and the ability to enable pressure-less Li- and Na-based solid-state batteries (

Suggested Citation

  • Tao Dai & Siyuan Wu & Yaxiang Lu & Yang Yang & Yuan Liu & Chao Chang & Xiaohui Rong & Ruijuan Xiao & Junmei Zhao & Yanhui Liu & Weihua Wang & Liquan Chen & Yong-Sheng Hu, 2023. "Inorganic glass electrolytes with polymer-like viscoelasticity," Nature Energy, Nature, vol. 8(11), pages 1221-1228, November.
  • Handle: RePEc:nat:natene:v:8:y:2023:i:11:d:10.1038_s41560-023-01356-y
    DOI: 10.1038/s41560-023-01356-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41560-023-01356-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41560-023-01356-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hui Pan & Lei Wang & Yu Shi & Chuanchao Sheng & Sixie Yang & Ping He & Haoshen Zhou, 2024. "A solid-state lithium-ion battery with micron-sized silicon anode operating free from external pressure," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Sunyoung Lee & Hayoung Park & Jae Young Kim & Jihoon Kim & Min-Ju Choi & Sangwook Han & Sewon Kim & Wonju Kim & Ho Won Jang & Jungwon Park & Kisuk Kang, 2024. "Unveiling crystal orientation-dependent interface property in composite cathodes for solid-state batteries by in situ microscopic probe," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natene:v:8:y:2023:i:11:d:10.1038_s41560-023-01356-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.