IDEAS home Printed from https://ideas.repec.org/a/nat/natene/v6y2021i7d10.1038_s41560-021-00862-1.html
   My bibliography  Save this article

Redox-neutral electrochemical conversion of CO2 to dimethyl carbonate

Author

Listed:
  • Kyu Min Lee

    (Seoul National University)

  • Jun Ho Jang

    (Seoul National University)

  • Mani Balamurugan

    (Seoul National University)

  • Jeong Eun Kim

    (Seoul National University)

  • Young In Jo

    (Seoul National University)

  • Ki Tae Nam

    (Seoul National University)

Abstract

The electrochemical reduction of CO2 to value-added products is a promising approach for using CO2. However, the products are limited to reduced forms, such as CO, HCOOH and C2H4. Decreasing the anodic overpotential and designing membrane-separated systems are important determinants of the overall efficiency of the process. In this study we explored the use of redox-neutral reactions in electrochemical CO2 reduction to expand the product scope and achieve higher efficiency. We combined the CO2 reduction reaction with two redox cycles in an undivided cell so that the input electrons are carried through the electrolyte rather than settling in CO2. As a result, dimethyl carbonate—a useful fuel additive—has been synthesized directly from CO2 in methanol solvent with a Faradaic efficiency of 60% at room temperature. Our study shows that the formation of methoxide intermediates and the cyclic regeneration of the uniformly dispersed palladium catalyst by in situ-generated oxidants are important for dimethyl carbonate synthesis at room temperature. Furthermore, we successfully synthesized diethyl carbonate from CO2 and ethanol, demonstrating the generality and expandability of our system.

Suggested Citation

  • Kyu Min Lee & Jun Ho Jang & Mani Balamurugan & Jeong Eun Kim & Young In Jo & Ki Tae Nam, 2021. "Redox-neutral electrochemical conversion of CO2 to dimethyl carbonate," Nature Energy, Nature, vol. 6(7), pages 733-741, July.
  • Handle: RePEc:nat:natene:v:6:y:2021:i:7:d:10.1038_s41560-021-00862-1
    DOI: 10.1038/s41560-021-00862-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41560-021-00862-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41560-021-00862-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiexin Zhu & Jiantao Li & Ruihu Lu & Ruohan Yu & Shiyong Zhao & Chengbo Li & Lei Lv & Lixue Xia & Xingbao Chen & Wenwei Cai & Jiashen Meng & Wei Zhang & Xuelei Pan & Xufeng Hong & Yuhang Dai & Yu Mao , 2023. "Surface passivation for highly active, selective, stable, and scalable CO2 electroreduction," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natene:v:6:y:2021:i:7:d:10.1038_s41560-021-00862-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.