IDEAS home Printed from https://ideas.repec.org/a/nat/natene/v6y2021i6d10.1038_s41560-021-00830-9.html
   My bibliography  Save this article

The critical role of composition-dependent intragrain planar defects in the performance of MA1–xFAxPbI3 perovskite solar cells

Author

Listed:
  • Wei Li

    (Wuhan University of Technology
    Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory)

  • Mathias Uller Rothmann

    (Monash University)

  • Ye Zhu

    (The Hong Kong Polytechnic University)

  • Weijian Chen

    (Swinburne University of Technology)

  • Chenquan Yang

    (Wuhan University of Technology)

  • Yongbo Yuan

    (Central South University)

  • Yen Yee Choo

    (Monash University)

  • Xiaoming Wen

    (Swinburne University of Technology)

  • Yi-Bing Cheng

    (Wuhan University of Technology
    Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory)

  • Udo Bach

    (Monash University
    Monash University
    Commonwealth Scientific and Industrial Research Organization
    Melbourne Centre for Nanofabrication)

  • Joanne Etheridge

    (Monash University
    Monash University)

Abstract

Perovskite solar cells show excellent power conversion efficiencies, long carrier diffusion lengths and low recombination rates. This encourages a view that intragrain defects are electronically benign with little impact on device performance. In this study we varied the methylammonium (MA)/formamidinium (FA) composition in MA1–xFAxPbI3 (x = 0–1), and compared the structure and density of the intragrain planar defects with device performance, otherwise keeping the device nominally the same. We found that charge carrier lifetime, open-circuit voltage deficit and current density–voltage hysteresis correlate empirically with the density and structure of {111}c planar defects (x = 0.5–1) and {112}t twin boundaries (x = 0–0.1). The best performance parameters were found when essentially no intragrain planar defects were evident (x = 0.2). Similarly, reducing the density of {111}c planar defects through MASCN vapour treatment of FAPbI3 (x ≈ 1) also improved performance. These observations suggest that intragrain defect control can provide an important route for improving perovskite solar cell performance, in addition to well-established parameters such as grain boundaries and interfaces.

Suggested Citation

  • Wei Li & Mathias Uller Rothmann & Ye Zhu & Weijian Chen & Chenquan Yang & Yongbo Yuan & Yen Yee Choo & Xiaoming Wen & Yi-Bing Cheng & Udo Bach & Joanne Etheridge, 2021. "The critical role of composition-dependent intragrain planar defects in the performance of MA1–xFAxPbI3 perovskite solar cells," Nature Energy, Nature, vol. 6(6), pages 624-632, June.
  • Handle: RePEc:nat:natene:v:6:y:2021:i:6:d:10.1038_s41560-021-00830-9
    DOI: 10.1038/s41560-021-00830-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41560-021-00830-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41560-021-00830-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Songhua Cai & Zhipeng Li & Yalan Zhang & Tanghao Liu & Peng Wang & Ming-Gang Ju & Shuping Pang & Shu Ping Lau & Xiao Cheng Zeng & Yuanyuan Zhou, 2024. "Intragrain impurity annihilation for highly efficient and stable perovskite solar cells," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Jun Nishida & Peter T. S. Chang & Jiselle Y. Ye & Prachi Sharma & Dylan M. Wharton & Samuel C. Johnson & Sean E. Shaheen & Markus B. Raschke, 2022. "Nanoscale heterogeneity of ultrafast many-body carrier dynamics in triple cation perovskites," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natene:v:6:y:2021:i:6:d:10.1038_s41560-021-00830-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.