Combined economic and technological evaluation of battery energy storage for grid applications
Author
Abstract
Suggested Citation
DOI: 10.1038/s41560-018-0290-1
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Li, Mo & Yang, Yi & Smith, Timothy M. & Wilson, Elizabeth J., 2020. "Wind can reduce storage-induced emissions at grid scales," Applied Energy, Elsevier, vol. 276(C).
- Li, Canbing & Chen, Dawei & Li, Yingjie & Li, Furong & Li, Ran & Wu, Qiuwei & Liu, Xubin & Wei, Juan & He, Shengtao & Zhou, Bin & Allen, Stephen, 2022. "Exploring the interaction between renewables and energy storage for zero-carbon electricity systems," Energy, Elsevier, vol. 261(PA).
- Englberger, Stefan & Abo Gamra, Kareem & Tepe, Benedikt & Schreiber, Michael & Jossen, Andreas & Hesse, Holger, 2021. "Electric vehicle multi-use: Optimizing multiple value streams using mobile storage systems in a vehicle-to-grid context," Applied Energy, Elsevier, vol. 304(C).
- Shi, Xingping & He, Qing & Lu, Chang & Wang, Tingting & Cui, Shuangshuang & Du, Dongmei, 2023. "Variable load modes and operation characteristics of closed Brayton cycle pumped thermal electricity storage system with liquid-phase storage," Renewable Energy, Elsevier, vol. 203(C), pages 715-730.
- Yuqiang Zeng & Fengyu Shen & Buyi Zhang & Jaeheon Lee & Divya Chalise & Qiye Zheng & Yanbao Fu & Sumanjeet Kaur & Sean D. Lubner & Vincent S. Battaglia & Bryan D. McCloskey & Michael C. Tucker & Ravi , 2023. "Nonintrusive thermal-wave sensor for operando quantification of degradation in commercial batteries," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
- Zhou, Yuekuan, 2022. "Transition towards carbon-neutral districts based on storage techniques and spatiotemporal energy sharing with electrification and hydrogenation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
- Schauf, Magnus & Schwenen, Sebastian, 2023. "System price dynamics for battery storage," Energy Policy, Elsevier, vol. 183(C).
- Ruixue Liu & Guannan He & Xizhe Wang & Dharik Mallapragada & Hongbo Zhao & Yang Shao-Horn & Benben Jiang, 2024. "A cross-scale framework for evaluating flexibility values of battery and fuel cell electric vehicles," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
- Wang, Qiao & Ye, Min & Cai, Xue & Sauer, Dirk Uwe & Li, Weihan, 2023. "Transferable data-driven capacity estimation for lithium-ion batteries with deep learning: A case study from laboratory to field applications," Applied Energy, Elsevier, vol. 350(C).
- Mathews, Ian & Xu, Bolun & He, Wei & Barreto, Vanessa & Buonassisi, Tonio & Peters, Ian Marius, 2020. "Technoeconomic model of second-life batteries for utility-scale solar considering calendar and cycle aging," Applied Energy, Elsevier, vol. 269(C).
- Alexandra von Meier & Elizabeth L. Ratnam & Kyle Brady & Keith Moffat & Jaimie Swartz, 2020. "Phasor-Based Control for Scalable Integration of Variable Energy Resources," Energies, MDPI, vol. 13(1), pages 1-14, January.
- Jafari, Mehdi & Botterud, Audun & Sakti, Apurba, 2020. "Estimating revenues from offshore wind-storage systems: The importance of advanced battery models," Applied Energy, Elsevier, vol. 276(C).
- Chen, Dongwen & Li, Yong & Abbas, Zulkarnain & Li, Dehong & Wang, Ruzhu, 2022. "Network flow calculation based on the directional nodal potential method for meshed heating networks," Energy, Elsevier, vol. 243(C).
- Yuhua Xia & Mengzheng Ouyang & Vladimir Yufit & Rui Tan & Anna Regoutz & Anqi Wang & Wenjie Mao & Barun Chakrabarti & Ashkan Kavei & Qilei Song & Anthony R. Kucernak & Nigel P. Brandon, 2022. "A cost-effective alkaline polysulfide-air redox flow battery enabled by a dual-membrane cell architecture," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
- Zhang, Hongyan & Gao, Shuaizhi & Zhou, Peng, 2023. "Role of digitalization in energy storage technological innovation: Evidence from China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natene:v:4:y:2019:i:1:d:10.1038_s41560-018-0290-1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.