IDEAS home Printed from https://ideas.repec.org/a/nat/natene/v4y2019i12d10.1038_s41560-019-0491-2.html
   My bibliography  Save this article

Fuels and energy carriers from single-site catalysts prepared via surface organometallic chemistry

Author

Listed:
  • Christophe Copéret

    (ETH Zürich)

Abstract

The petrochemical industry relies on catalysts for hydrocarbon conversions that often contain ill-defined active metal sites, hampering rational improvement. Surface organometallic chemistry (SOMC) has enabled the design of catalysts with tailored metal sites, often referred to as single sites. In this Perspective, I consider how SOMC has opened routes to synthesis of fuels and energy carriers not possible via traditional approaches and led to the discovery of alkane homologation processes, by giving access to a large proportion of low coordinated and highly reactive surface sites. While challenges lie ahead, particularly with respect to the improvement of catalyst activity and lifetime, as well as further control and characterization of active/surface site structure, SOMC is effective for increasing molecular level understanding of catalytic events as found in related industrial systems. Furthermore, single-site catalysts can also be used to provide molecular level precision in complex systems such as supported nanoparticles where dopant and support effects are ubiquitous, but poorly understood.

Suggested Citation

  • Christophe Copéret, 2019. "Fuels and energy carriers from single-site catalysts prepared via surface organometallic chemistry," Nature Energy, Nature, vol. 4(12), pages 1018-1024, December.
  • Handle: RePEc:nat:natene:v:4:y:2019:i:12:d:10.1038_s41560-019-0491-2
    DOI: 10.1038/s41560-019-0491-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41560-019-0491-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41560-019-0491-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natene:v:4:y:2019:i:12:d:10.1038_s41560-019-0491-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.