IDEAS home Printed from https://ideas.repec.org/a/nat/natene/v4y2019i11d10.1038_s41560-019-0463-6.html
   My bibliography  Save this article

Passivating contacts for crystalline silicon solar cells

Author

Listed:
  • Thomas G. Allen

    (King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC))

  • James Bullock

    (University of Melbourne
    University of California)

  • Xinbo Yang

    (King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC))

  • Ali Javey

    (University of California)

  • Stefaan De Wolf

    (King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC))

Abstract

The global photovoltaic (PV) market is dominated by crystalline silicon (c-Si) based technologies with heavily doped, directly metallized contacts. Recombination of photo-generated electrons and holes at the contact regions is increasingly constraining the power conversion efficiencies of these devices as other performance-limiting energy losses are overcome. To move forward, c-Si PV technologies must implement alternative contacting approaches. Passivating contacts, which incorporate thin films within the contact structure that simultaneously supress recombination and promote charge-carrier selectivity, are a promising next step for the mainstream c-Si PV industry. In this work, we review the fundamental physical processes governing contact formation in c-Si. In doing so we identify the role passivating contacts play in increasing c-Si solar cell efficiencies beyond the limitations imposed by heavy doping and direct metallization. Strategies towards the implementation of passivating contacts in industrial environments are discussed.

Suggested Citation

  • Thomas G. Allen & James Bullock & Xinbo Yang & Ali Javey & Stefaan De Wolf, 2019. "Passivating contacts for crystalline silicon solar cells," Nature Energy, Nature, vol. 4(11), pages 914-928, November.
  • Handle: RePEc:nat:natene:v:4:y:2019:i:11:d:10.1038_s41560-019-0463-6
    DOI: 10.1038/s41560-019-0463-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41560-019-0463-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41560-019-0463-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yehui Wen & Tianchi Zhang & Xingtao Wang & Tiantian Liu & Yu Wang & Rui Zhang & Miao Kan & Li Wan & Weihua Ning & Yong Wang & Deren Yang, 2024. "Amorphous (lysine)2PbI2 layer enhanced perovskite photovoltaics," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Kangas, H.L. & Ollikka, K. & Ahola, J. & Kim, Y., 2021. "Digitalisation in wind and solar power technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    3. Genshun Wang & Qiao Su & Hanbo Tang & Hua Wu & Hao Lin & Can Han & Tingting Wang & Chaowei Xue & Junxiong Lu & Liang Fang & Zhenguo Li & Xixiang Xu & Pingqi Gao, 2024. "27.09%-efficiency silicon heterojunction back contact solar cell and going beyond," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Hao Lin & Miao Yang & Xiaoning Ru & Genshun Wang & Shi Yin & Fuguo Peng & Chengjian Hong & Minghao Qu & Junxiong Lu & Liang Fang & Can Han & Paul Procel & Olindo Isabella & Pingqi Gao & Zhenguo Li & X, 2023. "Silicon heterojunction solar cells with up to 26.81% efficiency achieved by electrically optimized nanocrystalline-silicon hole contact layers," Nature Energy, Nature, vol. 8(8), pages 789-799, August.
    5. Chen Chen & Liang Wang & Weiyi Xia & Ke Qiu & Chuanhang Guo & Zirui Gan & Jing Zhou & Yuandong Sun & Dan Liu & Wei Li & Tao Wang, 2024. "Molecular interaction induced dual fibrils towards organic solar cells with certified efficiency over 20%," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Chen, Liutao & Sun, Yong & Zhang, Ning & Yang, Jiachuan & Wang, Dan, 2024. "Quantifying the benefits of BIPV windows in urban environment under climate change: A comparison of three Chinese cities," Renewable Energy, Elsevier, vol. 221(C).
    7. Hasnain Yousuf & Muhammad Quddamah Khokhar & Muhammad Aleem Zahid & Matheus Rabelo & Sungheon Kim & Duy Phong Pham & Youngkuk Kim & Junsin Yi, 2022. "Tunnel Oxide Deposition Techniques and Their Parametric Influence on Nano-Scaled SiO x Layer of TOPCon Solar Cell: A Review," Energies, MDPI, vol. 15(15), pages 1-29, August.
    8. Shaobing Xiong & Fuyu Tian & Feng Wang & Aiping Cao & Zeng Chen & Sheng Jiang & Di Li & Bin Xu & Hongbo Wu & Yefan Zhang & Hongwei Qiao & Zaifei Ma & Jianxin Tang & Haiming Zhu & Yefeng Yao & Xianjie , 2024. "Reducing nonradiative recombination for highly efficient inverted perovskite solar cells via a synergistic bimolecular interface," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    9. Sun, Bo & Lu, Lin & Yuan, Yanping & Ocłoń, Paweł, 2023. "Development and validation of a concise and anisotropic irradiance model for bifacial photovoltaic modules," Renewable Energy, Elsevier, vol. 209(C), pages 442-452.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natene:v:4:y:2019:i:11:d:10.1038_s41560-019-0463-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.