IDEAS home Printed from https://ideas.repec.org/a/nat/natene/v3y2018i1d10.1038_s41560-017-0057-0.html
   My bibliography  Save this article

Enhancing long-term photostability of BiVO4 photoanodes for solar water splitting by tuning electrolyte composition

Author

Listed:
  • Dong Ki Lee

    (University of Wisconsin-Madison)

  • Kyoung-Shin Choi

    (University of Wisconsin-Madison)

Abstract

As the performance of photoelectrodes used for solar water splitting continues to improve, enhancing the long-term stability of the photoelectrodes becomes an increasingly crucial issue. In this study, we report that tuning the composition of the electrolyte can be used as a strategy to suppress photocorrosion during solar water splitting. Anodic photocorrosion of BiVO4 photoanodes involves the loss of V5+ from the BiVO4 lattice by dissolution. We demonstrate that the use of a V5+-saturated electrolyte, which inhibits the photooxidation-coupled dissolution of BiVO4, can serve as a simple yet effective method to suppress anodic photocorrosion of BiVO4. The V5+ species in the solution can also incorporate into the FeOOH/NiOOH oxygen-evolution catalyst layer present on the BiVO4 surface during water oxidation, further enhancing water-oxidation kinetics. The effect of the V5+ species in the electrolyte on both the long-term photostability of BiVO4 and the performance of the FeOOH/NiOOH oxygen-evolution catalyst layer is systematically elucidated.

Suggested Citation

  • Dong Ki Lee & Kyoung-Shin Choi, 2018. "Enhancing long-term photostability of BiVO4 photoanodes for solar water splitting by tuning electrolyte composition," Nature Energy, Nature, vol. 3(1), pages 53-60, January.
  • Handle: RePEc:nat:natene:v:3:y:2018:i:1:d:10.1038_s41560-017-0057-0
    DOI: 10.1038/s41560-017-0057-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41560-017-0057-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41560-017-0057-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang Liu & Huishan Shang & Bing Zhang & Dongpeng Yan & Xu Xiang, 2024. "Surface fluorination of BiVO4 for the photoelectrochemical oxidation of glycerol to formic acid," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Hamdani, I.R. & Bhaskarwar, A.N., 2021. "Recent progress in material selection and device designs for photoelectrochemical water-splitting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    3. Tayebi, Meysam & Lee, Byeong-Kyu, 2019. "Recent advances in BiVO4 semiconductor materials for hydrogen production using photoelectrochemical water splitting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 332-343.
    4. Beibei Zhang & Shiqiang Yu & Ying Dai & Xiaojuan Huang & Lingjun Chou & Gongxuan Lu & Guojun Dong & Yingpu Bi, 2021. "Nitrogen-incorporation activates NiFeOx catalysts for efficiently boosting oxygen evolution activity and stability of BiVO4 photoanodes," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    5. Changhao Liu & Ningsi Zhang & Yang Li & Rongli Fan & Wenjing Wang & Jianyong Feng & Chen Liu & Jiaou Wang & Weichang Hao & Zhaosheng Li & Zhigang Zou, 2023. "Long-term durability of metastable β-Fe2O3 photoanodes in highly corrosive seawater," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natene:v:3:y:2018:i:1:d:10.1038_s41560-017-0057-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.