IDEAS home Printed from https://ideas.repec.org/a/nat/natene/v3y2018i12d10.1038_s41560-018-0278-x.html
   My bibliography  Save this article

Efficient two-terminal all-perovskite tandem solar cells enabled by high-quality low-bandgap absorber layers

Author

Listed:
  • Dewei Zhao

    (The University of Toledo)

  • Cong Chen

    (The University of Toledo
    Wuhan University)

  • Changlei Wang

    (The University of Toledo
    Wuhan University)

  • Maxwell M. Junda

    (The University of Toledo)

  • Zhaoning Song

    (The University of Toledo)

  • Corey R. Grice

    (The University of Toledo)

  • Yue Yu

    (The University of Toledo)

  • Chongwen Li

    (The University of Toledo)

  • Biwas Subedi

    (The University of Toledo)

  • Nikolas J. Podraza

    (The University of Toledo)

  • Xingzhong Zhao

    (Wuhan University)

  • Guojia Fang

    (Wuhan University)

  • Ren-Gen Xiong

    (Nanchang University
    Southeast University)

  • Kai Zhu

    (National Renewable Energy Laboratory)

  • Yanfa Yan

    (The University of Toledo)

Abstract

Multi-junction all-perovskite tandem solar cells are a promising choice for next-generation solar cells with high efficiency and low fabrication cost. However, the lack of high-quality low-bandgap perovskite absorber layers seriously hampers the development of efficient and stable two-terminal monolithic all-perovskite tandem solar cells. Here, we report a bulk-passivation strategy via incorporation of chlorine, to enlarge grains and reduce electronic disorder in mixed tin–lead low-bandgap (~1.25 eV) perovskite absorber layers. This enables the fabrication of efficient low-bandgap perovskite solar cells using thick absorber layers (~750 nm), which is a requisite for efficient tandem solar cells. Such improvement enables the fabrication of two-terminal all-perovskite tandem solar cells with a champion power conversion efficiency of 21% and steady-state efficiency of 20.7%. The efficiency is retained to 85% of its initial performance after 80 h of operation under continuous illumination.

Suggested Citation

  • Dewei Zhao & Cong Chen & Changlei Wang & Maxwell M. Junda & Zhaoning Song & Corey R. Grice & Yue Yu & Chongwen Li & Biwas Subedi & Nikolas J. Podraza & Xingzhong Zhao & Guojia Fang & Ren-Gen Xiong & K, 2018. "Efficient two-terminal all-perovskite tandem solar cells enabled by high-quality low-bandgap absorber layers," Nature Energy, Nature, vol. 3(12), pages 1093-1100, December.
  • Handle: RePEc:nat:natene:v:3:y:2018:i:12:d:10.1038_s41560-018-0278-x
    DOI: 10.1038/s41560-018-0278-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41560-018-0278-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41560-018-0278-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moradbeigi, Mahsa & Razaghi, Mohammad, 2024. "Optical–electrical simulation and optimization of an efficient lead-free 2T all perovskite tandem solar cell," Renewable Energy, Elsevier, vol. 220(C).
    2. Yurui Wang & Renxing Lin & Xiaoyu Wang & Chenshuaiyu Liu & Yameen Ahmed & Zilong Huang & Zhibin Zhang & Hongjiang Li & Mei Zhang & Yuan Gao & Haowen Luo & Pu Wu & Han Gao & Xuntian Zheng & Manya Li & , 2023. "Oxidation-resistant all-perovskite tandem solar cells in substrate configuration," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Jin Zhou & Shiqiang Fu & Shun Zhou & Lishuai Huang & Cheng Wang & Hongling Guan & Dexin Pu & Hongsen Cui & Chen Wang & Ti Wang & Weiwei Meng & Guojia Fang & Weijun Ke, 2024. "Mixed tin-lead perovskites with balanced crystallization and oxidation barrier for all-perovskite tandem solar cells," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Khan, Firoz & Rezgui, Béchir Dridi & Khan, Mohd Taukeer & Al-Sulaiman, Fahad, 2022. "Perovskite-based tandem solar cells: Device architecture, stability, and economic perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    5. Bahram Abdollahi Nejand & David B. Ritzer & Hang Hu & Fabian Schackmar & Somayeh Moghadamzadeh & Thomas Feeney & Roja Singh & Felix Laufer & Raphael Schmager & Raheleh Azmi & Milian Kaiser & Tobias Ab, 2022. "Scalable two-terminal all-perovskite tandem solar modules with a 19.1% efficiency," Nature Energy, Nature, vol. 7(7), pages 620-630, July.
    6. Nour El Islam Boukortt & Claudia Triolo & Saveria Santangelo & Salvatore Patanè, 2023. "All-Perovskite Tandem Solar Cells: From Certified 25% and Beyond," Energies, MDPI, vol. 16(8), pages 1-24, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natene:v:3:y:2018:i:12:d:10.1038_s41560-018-0278-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.