IDEAS home Printed from https://ideas.repec.org/a/nat/natene/v3y2018i11d10.1038_s41560-018-0261-6.html
   My bibliography  Save this article

A robust large-pore zirconium carboxylate metal–organic framework for energy-efficient water-sorption-driven refrigeration

Author

Listed:
  • Sujing Wang

    (Institut des Matériaux Poreux de Paris, FRE 2000 CNRS, Ecole Normale Supérieure, Ecole Supérieure de Physique et de Chimie Industrielles de Paris, PSL Université)

  • Ji Sun Lee

    (Korea Research Institute of Chemical Technology (KRICT))

  • Mohammad Wahiduzzaman

    (Institut Charles Gerhardt, Montpellier UMR 5253 CNRS ENSCM UM, Université Montpellier)

  • Jaedeuk Park

    (Korea Research Institute of Chemical Technology (KRICT))

  • Mégane Muschi

    (Institut des Matériaux Poreux de Paris, FRE 2000 CNRS, Ecole Normale Supérieure, Ecole Supérieure de Physique et de Chimie Industrielles de Paris, PSL Université)

  • Charlotte Martineau-Corcos

    (Institut Lavoisier de Versailles, UMR 8180 CNRS, Université de Versailles Saint-Quentin-en-Yvelines, Université Paris-Saclay
    CEMHTI, UPR 3079 CNRS)

  • Antoine Tissot

    (Institut des Matériaux Poreux de Paris, FRE 2000 CNRS, Ecole Normale Supérieure, Ecole Supérieure de Physique et de Chimie Industrielles de Paris, PSL Université)

  • Kyung Ho Cho

    (Korea Research Institute of Chemical Technology (KRICT))

  • Jérôme Marrot

    (Institut Lavoisier de Versailles, UMR 8180 CNRS, Université de Versailles Saint-Quentin-en-Yvelines, Université Paris-Saclay)

  • William Shepard

    (Synchrotron SOLEIL-UR1)

  • Guillaume Maurin

    (Institut Charles Gerhardt, Montpellier UMR 5253 CNRS ENSCM UM, Université Montpellier)

  • Jong-San Chang

    (Korea Research Institute of Chemical Technology (KRICT)
    Sungkyunkwan University)

  • Christian Serre

    (Institut des Matériaux Poreux de Paris, FRE 2000 CNRS, Ecole Normale Supérieure, Ecole Supérieure de Physique et de Chimie Industrielles de Paris, PSL Université)

Abstract

The discovery of more-efficient and stable water adsorbents for adsorption-driven chillers for cooling applications remains a challenge due to the low working capacity of water sorption, high regeneration temperature, low energy efficiency under given operating conditions and the toxicity risk of harmful working fluids for the state-of-the-art sorbents. Here we report the water-sorption properties of a porous zirconium carboxylate metal–organic framework, MIP-200, which features S-shaped sorption isotherms, a high water uptake of 0.39 g g−1 below P/P0 = 0.25, facile regeneration and stable cycling, and most importantly a notably high coefficient of performance of 0.78 for refrigeration at a low driving temperature (below 70 °C). A joint computational–experimental approach supports that MIP-200 may be a practical alternative to the current commercially available adsorbents for refrigeration when its water adsorption performance is combined with advantages such as the exceptional chemical and mechanical stability and the scalable synthesis that involves simple, cheap and green chemicals.

Suggested Citation

  • Sujing Wang & Ji Sun Lee & Mohammad Wahiduzzaman & Jaedeuk Park & Mégane Muschi & Charlotte Martineau-Corcos & Antoine Tissot & Kyung Ho Cho & Jérôme Marrot & William Shepard & Guillaume Maurin & Jong, 2018. "A robust large-pore zirconium carboxylate metal–organic framework for energy-efficient water-sorption-driven refrigeration," Nature Energy, Nature, vol. 3(11), pages 985-993, November.
  • Handle: RePEc:nat:natene:v:3:y:2018:i:11:d:10.1038_s41560-018-0261-6
    DOI: 10.1038/s41560-018-0261-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41560-018-0261-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41560-018-0261-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tingxian Li & Minqiang Wu & Jiaxing Xu & Ruxue Du & Taisen Yan & Pengfei Wang & Zhaoyuan Bai & Ruzhu Wang & Siqi Wang, 2022. "Simultaneous atmospheric water production and 24-hour power generation enabled by moisture-induced energy harvesting," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Qingqing Yan & Jing Wang & Linda Zhang & Jiaqi Liu & Mohammad Wahiduzzaman & Nana Yan & Liang Yu & Romain Dupuis & Hao Wang & Guillaume Maurin & Michael Hirscher & Peng Guo & Sujing Wang & Jiangfeng D, 2023. "A squarate-pillared titanium oxide quantum sieve towards practical hydrogen isotope separation," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Chen, W.D. & Vivekh, P. & Liu, M.Z. & Kumja, M. & Chua, K.J., 2021. "Energy improvement and performance prediction of desiccant coated dehumidifiers based on dimensional and scaling analysis," Applied Energy, Elsevier, vol. 303(C).
    4. Sujing Wang & Hong Giang T. Ly & Mohammad Wahiduzzaman & Charlotte Simms & Iurii Dovgaliuk & Antoine Tissot & Guillaume Maurin & Tatjana N. Parac-Vogt & Christian Serre, 2022. "A zirconium metal-organic framework with SOC topological net for catalytic peptide bond hydrolysis," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    5. Gordeeva, Larisa G. & Solovyeva, Marina V. & Sapienza, Alessio & Aristov, Yuri I., 2020. "Potable water extraction from the atmosphere: Potential of MOFs," Renewable Energy, Elsevier, vol. 148(C), pages 72-80.
    6. Zu, Kan & Qin, Menghao, 2021. "Experimental and modeling investigation of water adsorption of hydrophilic carboxylate-based MOF for indoor moisture control," Energy, Elsevier, vol. 228(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natene:v:3:y:2018:i:11:d:10.1038_s41560-018-0261-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.