IDEAS home Printed from https://ideas.repec.org/a/nat/natene/v2y2017i12d10.1038_s41560-017-0030-y.html
   My bibliography  Save this article

Increased CO2 selectivity of asphalt-derived porous carbon through introduction of water into pore space

Author

Listed:
  • Almaz S. Jalilov

    (Rice University
    King Fahd University of Petroleum and Minerals)

  • Yilun Li

    (Rice University)

  • Carter Kittrell

    (Rice University
    Rice University)

  • James M. Tour

    (Rice University
    Rice University
    Rice University
    Rice University)

Abstract

The development of inexpensive porous solid sorbents, such as porous carbons, that can selectively capture carbon dioxide (CO2) from natural gas wells is essential to reduce emission of CO2 to the atmosphere. However, at higher pressures, the selectivity for CO2 over that for methane (CH4) remains poor. Here we show that H2O can be imbibed within asphalt-derived porous carbon, with a surface area of 4,200 m2 g−1, to generate a hydrated powder material. While maintaining a high CO2 uptake capacity of 48 mmol g−1 (211 wt%), the molar selectivity for CO2 over CH4 increases to >200:1 and the H2O remains within the pores on repeated cycling. To mimic realistic natural gas wells, we used a 90% CH4 and 10% CO2 gas mixture and showed selective CO2 separation at 20 bar. Furthermore, in situ vibrational spectroscopy reveals the formation of an ordered matrix within the pores consisting of gas hydrates.

Suggested Citation

  • Almaz S. Jalilov & Yilun Li & Carter Kittrell & James M. Tour, 2017. "Increased CO2 selectivity of asphalt-derived porous carbon through introduction of water into pore space," Nature Energy, Nature, vol. 2(12), pages 932-938, December.
  • Handle: RePEc:nat:natene:v:2:y:2017:i:12:d:10.1038_s41560-017-0030-y
    DOI: 10.1038/s41560-017-0030-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41560-017-0030-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41560-017-0030-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Zherui & Dai, Sining & Chen, Cong & Lyu, Huangwu & Zhang, Shuheng & Liu, Xuanji & Li, Yanghui, 2024. "Hydrate aggregation in oil-gas pipelines: Unraveling the dual role of asphalt and water," Energy, Elsevier, vol. 290(C).
    2. Zhao, Yuejun & Fan, Guangjuan & Song, Kaoping & Li, Yilin & Chen, Hao & Sun, He, 2021. "The experimental research for reducing the minimum miscibility pressure of carbon dioxide miscible flooding," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natene:v:2:y:2017:i:12:d:10.1038_s41560-017-0030-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.