IDEAS home Printed from https://ideas.repec.org/a/nat/natene/v1y2016i7d10.1038_nenergy.2016.71.html
   My bibliography  Save this article

Promises and challenges of nanomaterials for lithium-based rechargeable batteries

Author

Listed:
  • Yongming Sun

    (Stanford University)

  • Nian Liu

    (Stanford University)

  • Yi Cui

    (Stanford University
    Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory)

Abstract

Tremendous progress has been made in the development of lithium-based rechargeable batteries in recent decades. Discoveries of new electrode materials as well as new storage mechanisms have substantially improved battery performance. In particular, nanomaterials design has emerged as a promising solution to tackle many fundamental problems in conventional battery materials. Here we discuss in detail several key issues in batteries, such as electrode volume change, solid–electrolyte interphase formation, electron and ion transport, and electrode atom/molecule movement, and then analyse the advantages presented by nanomaterials design. In addition, we discuss the challenges caused by using nanomaterials in batteries, including undesired parasitic reactions with electrolytes, low volumetric and areal energy density, and high costs from complex multi-step processing, and their possible solutions.

Suggested Citation

  • Yongming Sun & Nian Liu & Yi Cui, 2016. "Promises and challenges of nanomaterials for lithium-based rechargeable batteries," Nature Energy, Nature, vol. 1(7), pages 1-12, July.
  • Handle: RePEc:nat:natene:v:1:y:2016:i:7:d:10.1038_nenergy.2016.71
    DOI: 10.1038/nenergy.2016.71
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nenergy201671
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nenergy.2016.71?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel Akinyele & Juri Belikov & Yoash Levron, 2017. "Battery Storage Technologies for Electrical Applications: Impact in Stand-Alone Photovoltaic Systems," Energies, MDPI, vol. 10(11), pages 1-39, November.
    2. Li, Yong & Yang, Jie & Song, Jian, 2017. "Efficient storage mechanisms and heterogeneous structures for building better next-generation lithium rechargeable batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1503-1512.
    3. Riti Thapar Kapoor & Mohd Rafatullah & Mohammad Qamar & Mohammad Qutob & Abeer M. Alosaimi & Hajer S. Alorfi & Mahmoud A. Hussein, 2022. "Review on Recent Developments in Bioinspired-Materials for Sustainable Energy and Environmental Applications," Sustainability, MDPI, vol. 14(24), pages 1-30, December.
    4. Tang, Kejian & Peng, Xiangqi & Chen, Shuijiao & Song, Fei & Liu, Zhichao & Hu, Jian & Xie, Xiuqiang & Wu, Zhenjun, 2022. "Hierarchically porous carbon derived from delignified biomass for high sulfur-loading room-temperature sodium-sulfur batteries," Renewable Energy, Elsevier, vol. 201(P1), pages 832-840.
    5. Guoyu Qian & Yiwei Li & Haibiao Chen & Lin Xie & Tongchao Liu & Ni Yang & Yongli Song & Cong Lin & Junfang Cheng & Naotoshi Nakashima & Meng Zhang & Zikun Li & Wenguang Zhao & Xiangjie Yang & Hai Lin , 2023. "Revealing the aging process of solid electrolyte interphase on SiOx anode," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Zhang, Yunong & Liu, Le & Xi, Jingyu & Wu, Zenghua & Qiu, Xinping, 2017. "The benefits and limitations of electrolyte mixing in vanadium flow batteries," Applied Energy, Elsevier, vol. 204(C), pages 373-381.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natene:v:1:y:2016:i:7:d:10.1038_nenergy.2016.71. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.