IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-07880-w.html
   My bibliography  Save this article

Impacts of climate on the biodiversity-productivity relationship in natural forests

Author

Listed:
  • Songlin Fei

    (Purdue University)

  • Insu Jo

    (Purdue University)

  • Qinfeng Guo

    (US Department of Agriculture)

  • David A. Wardle

    (Nanyang Technological University
    Swedish University of Agricultural Sciences)

  • Jingyun Fang

    (Peking University)

  • Anping Chen

    (Purdue University)

  • Christopher M. Oswalt

    (US Department of Agriculture)

  • Eckehard G. Brockerhoff

    (Scion (New Zealand Forest Research Institute)
    Swiss Federal Research Institute WSL)

Abstract

Understanding biodiversity-productivity relationships (BPRs) is of theoretical importance, and has important management implications. Most work on BPRs has focused on simple and/or experimentally assembled communities, and it is unclear how these observed BPRs can be extended to complex natural forest ecosystems. Using data from over 115,000 forest plots across the contiguous United States, we show that the bivariate BPRs are positive in dry climates and hump-shaped in mesic climates. When considering other site characteristics, BPRs change to neutral in dry climates and remain hump-shaped in humid sites. Our results indicate that climatic variation is an underlying determinant of contrasting BPRs observed across a large spatial extent, while both biotic factors (e.g., stand age and density) and abiotic factors (e.g., soil properties) can impact BPRs within a given climate unit. These findings suggest that tradeoffs need be made when considering whether to maximize productivity vs. conserve biodiversity, especially in mesic climates.

Suggested Citation

  • Songlin Fei & Insu Jo & Qinfeng Guo & David A. Wardle & Jingyun Fang & Anping Chen & Christopher M. Oswalt & Eckehard G. Brockerhoff, 2018. "Impacts of climate on the biodiversity-productivity relationship in natural forests," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-07880-w
    DOI: 10.1038/s41467-018-07880-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-07880-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-07880-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aryal, Kishor & Awasthi, Nripesh & Maraseni, Tek & Laudari, Hari Krishna & Gotame, Pabitra & Bist, Dhan Bahadur, 2023. "Calibrating Nepal's scientific forest management practices in the measure of forest restoration," Land Use Policy, Elsevier, vol. 127(C).
    2. Tetsuo I. Kohyama & Douglas Sheil & I-Fang Sun & Kaoru Niiyama & Eizi Suzuki & Tsutom Hiura & Naoyuki Nishimura & Kazuhiko Hoshizaki & Shu-Hui Wu & Wei-Chun Chao & Zamah S. Nur Hajar & Joeni S. Rahajo, 2023. "Contribution of tree community structure to forest productivity across a thermal gradient in eastern Asia," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Shan Luo & Richard P. Phillips & Insu Jo & Songlin Fei & Jingjing Liang & Bernhard Schmid & Nico Eisenhauer, 2023. "Higher productivity in forests with mixed mycorrhizal strategies," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Carlos Mestanza-Ramón & Robinson J. Herrera Feijoo & Cristhian Chicaiza-Ortiz & Isabel Domínguez Gaibor & Rubén G. Mateo, 2021. "Estimation of Current and Future Suitable Areas for Tapirus pinchaque in Ecuador," Sustainability, MDPI, vol. 13(20), pages 1-14, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-07880-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.