IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-07791-w.html
   My bibliography  Save this article

Functional genomic analysis identifies miRNA repertoire regulating C. elegans oocyte development

Author

Listed:
  • Amanda L. Minogue

    (Baylor College of Medicine
    U.T. MD Anderson Cancer Center)

  • Michael R. Tackett

    (Abcam, One Kendall Square)

  • Elnaz Atabakhsh

    (Abcam, One Kendall Square)

  • Genesis Tejada

    (Abcam, One Kendall Square)

  • Swathi Arur

    (Baylor College of Medicine
    U.T. MD Anderson Cancer Center)

Abstract

Oocyte-specific miRNA function remains unclear in mice and worms because loss of Dgcr8 and Dicer from mouse and worm oocytes, respectively, does not yield oogenic defects. These data lead to several models: (a) miRNAs are not generated in oocytes; (b) miRNAs are generated but do not perform an oogenic function; (c) functional oocyte miRNAs are generated in a manner independent of these enzymes. Here, we test these models using a combination of genomic, expression and functional analyses on the C. elegans germline. We identify a repertoire of at least twenty-three miRNAs that accumulate in four spatial domains in oocytes. Genetic tests demonstrate that oocyte-expressed miRNAs regulate key oogenic processes within their respective expression domains. Unexpectedly, we find that over half of the oocyte-expressed miRNAs are generated through an unknown Drosha independent mechanism. Thus, a functional miRNA repertoire generated via Drosha dependent and independent pathways regulates C. elegans oocyte development.

Suggested Citation

  • Amanda L. Minogue & Michael R. Tackett & Elnaz Atabakhsh & Genesis Tejada & Swathi Arur, 2018. "Functional genomic analysis identifies miRNA repertoire regulating C. elegans oocyte development," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-07791-w
    DOI: 10.1038/s41467-018-07791-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-07791-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-07791-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weina Xu & Jinyi Liu & Huan Qi & Ruolin Si & Zhiguang Zhao & Zhiju Tao & Yuchuan Bai & Shipeng Hu & Xiaohan Sun & Yulin Cong & Haoye Zhang & Duchangjiang Fan & Long Xiao & Yangyang Wang & Yongbin Li &, 2024. "A lineage-resolved cartography of microRNA promoter activity in C. elegans empowers multidimensional developmental analysis," Nature Communications, Nature, vol. 15(1), pages 1-23, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-07791-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.