IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-07454-w.html
   My bibliography  Save this article

Chromatogram libraries improve peptide detection and quantification by data independent acquisition mass spectrometry

Author

Listed:
  • Brian C. Searle

    (University of Washington
    Proteome Software)

  • Lindsay K. Pino

    (University of Washington)

  • Jarrett D. Egertson

    (University of Washington)

  • Ying S. Ting

    (University of Washington)

  • Robert T. Lawrence

    (University of Washington)

  • Brendan X. MacLean

    (University of Washington)

  • Judit Villén

    (University of Washington)

  • Michael J. MacCoss

    (University of Washington)

Abstract

Data independent acquisition (DIA) mass spectrometry is a powerful technique that is improving the reproducibility and throughput of proteomics studies. Here, we introduce an experimental workflow that uses this technique to construct chromatogram libraries that capture fragment ion chromatographic peak shape and retention time for every detectable peptide in a proteomics experiment. These coordinates calibrate protein databases or spectrum libraries to a specific mass spectrometer and chromatography setup, facilitating DIA-only pipelines and the reuse of global resource libraries. We also present EncyclopeDIA, a software tool for generating and searching chromatogram libraries, and demonstrate the performance of our workflow by quantifying proteins in human and yeast cells. We find that by exploiting calibrated retention time and fragmentation specificity in chromatogram libraries, EncyclopeDIA can detect 20–25% more peptides from DIA experiments than with data dependent acquisition-based spectrum libraries alone.

Suggested Citation

  • Brian C. Searle & Lindsay K. Pino & Jarrett D. Egertson & Ying S. Ting & Robert T. Lawrence & Brendan X. MacLean & Judit Villén & Michael J. MacCoss, 2018. "Chromatogram libraries improve peptide detection and quantification by data independent acquisition mass spectrometry," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-07454-w
    DOI: 10.1038/s41467-018-07454-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-07454-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-07454-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fengchao Yu & Guo Ci Teo & Andy T. Kong & Klemens Fröhlich & Ginny Xiaohe Li & Vadim Demichev & Alexey I. Nesvizhskii, 2023. "Analysis of DIA proteomics data using MSFragger-DIA and FragPipe computational platform," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Digant Nayak & Dongwen Lv & Yaxia Yuan & Peiyi Zhang & Wanyi Hu & Anindita Nayak & Eliza A. Ruben & Zongyang Lv & Patrick Sung & Robert Hromas & Guangrong Zheng & Daohong Zhou & Shaun K. Olsen, 2024. "Development and crystal structures of a potent second-generation dual degrader of BCL-2 and BCL-xL," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    3. Marziah Hashimi & T. Andrew Sebrell & Jodi F. Hedges & Deann Snyder & Katrina N. Lyon & Stephanie D. Byrum & Samuel G. Mackintosh & Dan Crowley & Michelle D. Cherne & David Skwarchuk & Amanda Robison , 2023. "Antiviral responses in a Jamaican fruit bat intestinal organoid model of SARS-CoV-2 infection," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    4. Rafaela Muniz de Queiroz & Gizem Efe & Asja Guzman & Naoko Hashimoto & Yusuke Kawashima & Tomoaki Tanaka & Anil K. Rustgi & Carol Prives, 2024. "Mdm2 requires Sprouty4 to regulate focal adhesion formation and metastasis independent of p53," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    5. Klemens Fröhlich & Eva Brombacher & Matthias Fahrner & Daniel Vogele & Lucas Kook & Niko Pinter & Peter Bronsert & Sylvia Timme-Bronsert & Alexander Schmidt & Katja Bärenfaller & Clemens Kreutz & Oliv, 2022. "Benchmarking of analysis strategies for data-independent acquisition proteomics using a large-scale dataset comprising inter-patient heterogeneity," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    6. Masaji Sakaguchi & Shota Okagawa & Yuma Okubo & Yuri Otsuka & Kazuki Fukuda & Motoyuki Igata & Tatsuya Kondo & Yoshifumi Sato & Tatsuya Yoshizawa & Takaichi Fukuda & Kazuya Yamagata & Weikang Cai & Yu, 2022. "Phosphatase protector alpha4 (α4) is involved in adipocyte maintenance and mitochondrial homeostasis through regulation of insulin signaling," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    7. Zhi Huang & Gennifer E. Merrihew & Eric B. Larson & Jea Park & Deanna Plubell & Edward J. Fox & Kathleen S. Montine & Caitlin S. Latimer & C. Dirk Keene & James Y. Zou & Michael J. MacCoss & Thomas J., 2023. "Brain proteomic analysis implicates actin filament processes and injury response in resilience to Alzheimer’s disease," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    8. Valdemaras Petrosius & Pedro Aragon-Fernandez & Nil Üresin & Gergo Kovacs & Teeradon Phlairaharn & Benjamin Furtwängler & Jeff Op De Beeck & Sarah L. Skovbakke & Steffen Goletz & Simon Francis Thomsen, 2023. "Exploration of cell state heterogeneity using single-cell proteomics through sensitivity-tailored data-independent acquisition," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    9. Ray Sajulga & Caleb Easterly & Michael Riffle & Bart Mesuere & Thilo Muth & Subina Mehta & Praveen Kumar & James Johnson & Bjoern Andreas Gruening & Henning Schiebenhoefer & Carolin A Kolmeder & Steph, 2020. "Survey of metaproteomics software tools for functional microbiome analysis," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-20, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-07454-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.