IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-07449-7.html
   My bibliography  Save this article

DNA interference and beyond: structure and functions of prokaryotic Argonaute proteins

Author

Listed:
  • Lidiya Lisitskaya

    (Russian Academy of Sciences)

  • Alexei A. Aravin

    (Russian Academy of Sciences
    California Institute of Technology)

  • Andrey Kulbachinskiy

    (Russian Academy of Sciences)

Abstract

Recognition and repression of RNA targets by Argonaute proteins guided by small RNAs is the essence of RNA interference in eukaryotes. Argonaute proteins with diverse structures are also found in many bacterial and archaeal genomes. Recent studies revealed that, similarly to their eukaryotic counterparts, prokaryotic Argonautes (pAgos) may function in cell defense against foreign genetic elements but, in contrast, preferably act on DNA targets. Many crucial details of the pAgo action, and the roles of a plethora of pAgos with non-conventional architecture remain unknown. Here, we review available structural and biochemical data on pAgos and discuss their possible functions in host defense and other genetic processes in prokaryotic cells.

Suggested Citation

  • Lidiya Lisitskaya & Alexei A. Aravin & Andrey Kulbachinskiy, 2018. "DNA interference and beyond: structure and functions of prokaryotic Argonaute proteins," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-07449-7
    DOI: 10.1038/s41467-018-07449-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-07449-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-07449-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pengdbamba Dieudonné Zongo & Nicolas Cabanel & Guilhem Royer & Florence Depardieu & Alain Hartmann & Thierry Naas & Philippe Glaser & Isabelle Rosinski-Chupin, 2024. "An antiplasmid system drives antibiotic resistance gene integration in carbapenemase-producing Escherichia coli lineages," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Lidiya Lisitskaya & Yeonoh Shin & Aleksei Agapov & Anna Olina & Ekaterina Kropocheva & Sergei Ryazansky & Alexei A. Aravin & Daria Esyunina & Katsuhiko S. Murakami & Andrey Kulbachinskiy, 2022. "Programmable RNA targeting by bacterial Argonaute nucleases with unconventional guide binding and cleavage specificity," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. Xiangkai Zhen & Xiaolong Xu & Le Ye & Song Xie & Zhijie Huang & Sheng Yang & Yanhui Wang & Jinyu Li & Feng Long & Songying Ouyang, 2024. "Structural basis of antiphage immunity generated by a prokaryotic Argonaute-associated SPARSA system," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-07449-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.