IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-07448-8.html
   My bibliography  Save this article

Distinct contributions of tensile and shear stress on E-cadherin levels during morphogenesis

Author

Listed:
  • Girish R. Kale

    (Aix Marseille Université, CNRS, IBDM-UMR7288, Turing Center for Living Systems
    GKVK Campus)

  • Xingbo Yang

    (Northwestern University
    Harvard University)

  • Jean-Marc Philippe

    (Aix Marseille Université, CNRS, IBDM-UMR7288, Turing Center for Living Systems)

  • Madhav Mani

    (Northwestern University)

  • Pierre-François Lenne

    (Aix Marseille Université, CNRS, IBDM-UMR7288, Turing Center for Living Systems)

  • Thomas Lecuit

    (Aix Marseille Université, CNRS, IBDM-UMR7288, Turing Center for Living Systems
    Collège de France)

Abstract

During epithelial morphogenesis, cell contacts (junctions) are constantly remodeled by mechanical forces that work against adhesive forces. E-cadherin complexes play a pivotal role in this process by providing persistent cell adhesion and by transmitting mechanical tension. In this context, it is unclear how mechanical forces affect E-cadherin adhesion and junction dynamics. During Drosophila embryo axis elongation, Myosin-II activity in the apico-medial and junctional cortex generates mechanical forces to drive junction remodeling. Here we report that the ratio between Vinculin and E-cadherin intensities acts as a ratiometric readout for these mechanical forces (load) at E-cadherin complexes. Medial Myosin-II loads E-cadherin complexes on all junctions, exerts tensile forces, and increases levels of E-cadherin. Junctional Myosin-II, on the other hand, biases the distribution of load between junctions of the same cell, exerts shear forces, and decreases the levels of E-cadherin. This work suggests distinct effects of tensile versus shear stresses on E-cadherin adhesion.

Suggested Citation

  • Girish R. Kale & Xingbo Yang & Jean-Marc Philippe & Madhav Mani & Pierre-François Lenne & Thomas Lecuit, 2018. "Distinct contributions of tensile and shear stress on E-cadherin levels during morphogenesis," Nature Communications, Nature, vol. 9(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-07448-8
    DOI: 10.1038/s41467-018-07448-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-07448-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-07448-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. K. Sri-Ranjan & J. L. Sanchez-Alonso & P. Swiatlowska & S. Rothery & P. Novak & S. Gerlach & D. Koeninger & B. Hoffmann & R. Merkel & M. M. Stevens & S. X. Sun & J. Gorelik & Vania M. M. Braga, 2022. "Intrinsic cell rheology drives junction maturation," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    2. Eoin McEvoy & Tal Sneh & Emad Moeendarbary & Yousef Javanmardi & Nadia Efimova & Changsong Yang & Gloria E. Marino-Bravante & Xingyu Chen & Jorge Escribano & Fabian Spill & José Manuel Garcia-Aznar & , 2022. "Feedback between mechanosensitive signaling and active forces governs endothelial junction integrity," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. Sanjay Karki & Mehdi Saadaoui & Valentin Dunsing & Stephen Kerridge & Elise Silva & Jean-Marc Philippe & Cédric Maurange & Thomas Lecuit, 2023. "Serotonin signaling regulates actomyosin contractility during morphogenesis in evolutionarily divergent lineages," Nature Communications, Nature, vol. 14(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-07448-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.