IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-07436-y.html
   My bibliography  Save this article

Comparative expression profiling reveals widespread coordinated evolution of gene expression across eukaryotes

Author

Listed:
  • Trevor Martin

    (Stanford University)

  • Hunter B. Fraser

    (Stanford University)

Abstract

Comparative studies of gene expression across species have revealed many important insights, but have also been limited by the number of species represented. Here we develop an approach to identify orthologs between highly diverged transcriptome assemblies, and apply this to 657 RNA-seq gene expression profiles from 309 diverse unicellular eukaryotes. We analyzed the resulting data for coevolutionary patterns, and identify several hundred protein complexes and pathways whose expression levels have evolved in a coordinated fashion across the trillions of generations separating these species, including many gene sets with little or no within-species co-expression across environmental or genetic perturbations. We also detect examples of adaptive evolution, for example of tRNA ligase levels to match genome-wide codon usage. In sum, we find that comparative studies from extremely diverse organisms can reveal new insights into the evolution of gene expression, including coordinated evolution of some of the most conserved protein complexes in eukaryotes.

Suggested Citation

  • Trevor Martin & Hunter B. Fraser, 2018. "Comparative expression profiling reveals widespread coordinated evolution of gene expression across eukaryotes," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-07436-y
    DOI: 10.1038/s41467-018-07436-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-07436-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-07436-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-07436-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.