IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-07412-6.html
   My bibliography  Save this article

Metabolic engineering of Escherichia coli for de novo biosynthesis of vitamin B12

Author

Listed:
  • Huan Fang

    (Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Dong Li

    (Chinese Academy of Sciences)

  • Jie Kang

    (Chinese Academy of Sciences)

  • Pingtao Jiang

    (Chinese Academy of Sciences)

  • Jibin Sun

    (Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Dawei Zhang

    (Chinese Academy of Sciences
    Chinese Academy of Sciences
    National Engineering Laboratory for Industrial Enzymes)

Abstract

The only known source of vitamin B12 (adenosylcobalamin) is from bacteria and archaea. Here, using genetic and metabolic engineering, we generate an Escherichia coli strain that produces vitamin B12 via an engineered de novo aerobic biosynthetic pathway. In vitro and/or in vivo analysis of genes involved in adenosylcobinamide phosphate biosynthesis from Rhodobacter capsulatus suggest that the biosynthetic steps from co(II)byrinic acid a,c-diamide to adocobalamin are the same in both the aerobic and anaerobic pathways. Finally, we increase the vitamin B12 yield of a recombinant E. coli strain by more than ∼250-fold to 307.00 µg g−1 DCW via metabolic engineering and optimization of fermentation conditions. Beyond our demonstration of E. coli as a microbial biosynthetic platform for vitamin B12 production, our study offers an encouraging example of how the several dozen proteins of a complex biosynthetic pathway can be transferred between organisms to facilitate industrial production.

Suggested Citation

  • Huan Fang & Dong Li & Jie Kang & Pingtao Jiang & Jibin Sun & Dawei Zhang, 2018. "Metabolic engineering of Escherichia coli for de novo biosynthesis of vitamin B12," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-07412-6
    DOI: 10.1038/s41467-018-07412-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-07412-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-07412-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Linxia Liu & Jinlong Li & Yuanming Gai & Zhizhong Tian & Yanyan Wang & Tenghe Wang & Pi Liu & Qianqian Yuan & Hongwu Ma & Sang Yup Lee & Dawei Zhang, 2023. "Protein engineering and iterative multimodule optimization for vitamin B6 production in Escherichia coli," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Alicia E. Graham & Rodrigo Ledesma-Amaro, 2023. "The microbial food revolution," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Qian Kang & Huan Fang & Mengjie Xiang & Kaixing Xiao & Pingtao Jiang & Chun You & Sang Yup Lee & Dawei Zhang, 2023. "A synthetic cell-free 36-enzyme reaction system for vitamin B12 production," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-07412-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.