IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-07314-7.html
   My bibliography  Save this article

RIG-I like receptor sensing of host RNAs facilitates the cell-intrinsic immune response to KSHV infection

Author

Listed:
  • Yang Zhao

    (Vanderbilt University School of Medicine)

  • Xiang Ye

    (Vanderbilt University School of Medicine)

  • William Dunker

    (Vanderbilt University School of Medicine)

  • Yu Song

    (Vanderbilt University School of Medicine
    Xinxiang Medical University)

  • John Karijolich

    (Vanderbilt University School of Medicine
    Vanderbilt-Ingram Cancer Center
    Vanderbilt Institute for Infection, Immunology and Inflammation)

Abstract

The RIG-I like receptors (RLRs) RIG-I and MDA5 are cytosolic RNA helicases best characterized as restriction factors for RNA viruses. However, evidence suggests RLRs participate in innate immune recognition of other pathogens, including DNA viruses. Kaposi’s sarcoma-associated herpesvirus (KSHV) is a human gammaherpesvirus and the etiological agent of Kaposi’s sarcoma and primary effusion lymphoma (PEL). Here, we demonstrate that RLRs restrict KSHV lytic reactivation and we demonstrate that restriction is facilitated by the recognition of host-derived RNAs. Misprocessed noncoding RNAs represent an abundant class of RIG-I substrates, and biochemical characterizations reveal that an infection-dependent reduction in the cellular triphosphatase DUSP11 results in an accumulation of select triphosphorylated noncoding RNAs, enabling their recognition by RIG-I. These findings reveal an intricate relationship between RNA processing and innate immunity, and demonstrate that an antiviral innate immune response can be elicited by the sensing of misprocessed cellular RNAs.

Suggested Citation

  • Yang Zhao & Xiang Ye & William Dunker & Yu Song & John Karijolich, 2018. "RIG-I like receptor sensing of host RNAs facilitates the cell-intrinsic immune response to KSHV infection," Nature Communications, Nature, vol. 9(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-07314-7
    DOI: 10.1038/s41467-018-07314-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-07314-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-07314-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Suba Rajendren & Xiang Ye & William Dunker & Antiana Richardson & John Karijolich, 2023. "The cellular and KSHV A-to-I RNA editome in primary effusion lymphoma and its role in the viral lifecycle," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Takayoshi Shirasaki & Satoshi Yamagoe & Tetsuro Shimakami & Kazuhisa Murai & Ryu Imamura & Kiyo-Aki Ishii & Hiroaki Takayama & Yukako Matsumoto & Natsumi Tajima-Shirasaki & Naoto Nagata & Ryogo Shimiz, 2022. "Leukocyte cell-derived chemotaxin 2 is an antiviral regulator acting through the proto-oncogene MET," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-07314-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.