IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-07288-6.html
   My bibliography  Save this article

Accelerating water dissociation kinetics by isolating cobalt atoms into ruthenium lattice

Author

Listed:
  • Junjie Mao

    (Anhui Normal University
    Tsinghua University)

  • Chun-Ting He

    (Jiangxi Normal University)

  • Jiajing Pei

    (Beijing University of Chemical Technology)

  • Wenxing Chen

    (Tsinghua University)

  • Dongsheng He

    (South University of Science and Technology of China)

  • Yiqing He

    (Tsinghua University)

  • Zhongbin Zhuang

    (Beijing University of Chemical Technology)

  • Chen Chen

    (Tsinghua University)

  • Qing Peng

    (Tsinghua University)

  • Dingsheng Wang

    (Tsinghua University)

  • Yadong Li

    (Tsinghua University)

Abstract

Designing highly active and robust platinum-free catalysts for hydrogen evolution reaction is of vital importance for clean energy applications yet challenging. Here we report highly active and stable cobalt-substituted ruthenium nanosheets for hydrogen evolution, in which cobalt atoms are isolated in ruthenium lattice as revealed by aberration-corrected high-resolution transmission electron microscopy and X-ray absorption fine structure measurement. Impressively, the cobalt-substituted ruthenium nanosheets only need an extremely low overpotential of 13 mV to achieve a current density of 10 mA cm−2 in 1 M KOH media and an ultralow Tafel slope of 29 mV dec−1, which exhibit top-level catalytic activity among all reported platinum-free electrocatalysts. The theoretical calculations reveal that the energy barrier of water dissociation can greatly reduce after single cobalt atom substitution, leading to its superior hydrogen evolution performance. This study provides a new insight into the development of highly efficient platinum-free hydrogen evolution catalysts.

Suggested Citation

  • Junjie Mao & Chun-Ting He & Jiajing Pei & Wenxing Chen & Dongsheng He & Yiqing He & Zhongbin Zhuang & Chen Chen & Qing Peng & Dingsheng Wang & Yadong Li, 2018. "Accelerating water dissociation kinetics by isolating cobalt atoms into ruthenium lattice," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-07288-6
    DOI: 10.1038/s41467-018-07288-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-07288-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-07288-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiaxi Zhang & Longhai Zhang & Jiamin Liu & Chengzhi Zhong & Yuanhua Tu & Peng Li & Li Du & Shengli Chen & Zhiming Cui, 2022. "OH spectator at IrMo intermetallic narrowing activity gap between alkaline and acidic hydrogen evolution reaction," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Zhang, Qian & Guo, Weijia & Yang, Yushan & Shen, Shunyu & Chen, Xin & Shao, Kai & Wang, Zhenjie & Sun, Qingfeng & Li, Caicai, 2024. "Ru decorated natural cellulose nanofiber-derived carbon aerogel for efficient hydrogen evolution in alkaline seawater," Renewable Energy, Elsevier, vol. 227(C).
    3. Ying Zang & Di-Qiu Lu & Kun Wang & Bo Li & Peng Peng & Ya-Qian Lan & Shuang-Quan Zang, 2023. "A pyrolysis-free Ni/Fe bimetallic electrocatalyst for overall water splitting," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Fengyi Shen & Zhihao Zhang & Zhe Wang & Hao Ren & Xinhu Liang & Zengjian Cai & Shitu Yang & Guodong Sun & Yanan Cao & Xiaoxin Yang & Mingzhen Hu & Zhengping Hao & Kebin Zhou, 2024. "Oxophilic Ce single atoms-triggered active sites reverse for superior alkaline hydrogen evolution," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Yiming Zhu & Jiaao Wang & Toshinari Koketsu & Matthias Kroschel & Jin-Ming Chen & Su-Yang Hsu & Graeme Henkelman & Zhiwei Hu & Peter Strasser & Jiwei Ma, 2022. "Iridium single atoms incorporated in Co3O4 efficiently catalyze the oxygen evolution in acidic conditions," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Jiaqi Zhao & Jinjia Liu & Zhenhua Li & Kaiwen Wang & Run Shi & Pu Wang & Qing Wang & Geoffrey I. N. Waterhouse & Xiaodong Wen & Tierui Zhang, 2023. "Ruthenium-cobalt single atom alloy for CO photo-hydrogenation to liquid fuels at ambient pressures," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-07288-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.