Author
Listed:
- Guangyao Zhao
(Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences
University of the Chinese Academy of Sciences)
- Huanli Dong
(Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences
Capital Normal University)
- Qing Liao
(Capital Normal University)
- Jun Jiang
(University of Science and Technology of China)
- Yi Luo
(University of Science and Technology of China)
- Hongbing Fu
(Capital Normal University)
- Wenping Hu
(Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences
Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering)
Abstract
Integrating electronics and photonics is critically important for the realization of high-density and high-speed optoelectronic circuits. However, it remains challenging to achieve this target due to the difficulty of merging many different areas of science and technology. Here, we show an organic integrated optoelectronic device, namely, organic field-effect optical waveguide, integrating field-effect transistor and optical waveguide together. In such device, the propagation of optical waveguide in the active organic semiconductor can be tuned by the third terminal—the gate electrode of transistor, giving a controllable modulation depth as high as 70% and 50% in parallel and perpendicular directions of charge transport versus optical waveguide, respectively. Also, the optical waveguide with different directions can turn the field-effect of the device with the photodependence ratio up to 14800. The successful integration of active field-effect transistor with semiconductor waveguide modulator expands opportunities for creating scalable integration of electronics and photonics in a chip.
Suggested Citation
Guangyao Zhao & Huanli Dong & Qing Liao & Jun Jiang & Yi Luo & Hongbing Fu & Wenping Hu, 2018.
"Organic field-effect optical waveguides,"
Nature Communications, Nature, vol. 9(1), pages 1-7, December.
Handle:
RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-07269-9
DOI: 10.1038/s41467-018-07269-9
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-07269-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.