IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-07185-y.html
   My bibliography  Save this article

Proteome-wide analysis of USP14 substrates revealed its role in hepatosteatosis via stabilization of FASN

Author

Listed:
  • Bin Liu

    (Fudan University
    Hubei Polytechnic University School of Medicine
    Chinese Academy of Sciences)

  • Shangwen Jiang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Min Li

    (Fudan University)

  • Xuelian Xiong

    (Fudan University)

  • Mingrui Zhu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Duanzhuo Li

    (Hubei Polytechnic University School of Medicine)

  • Lei Zhao

    (Chinese Academy of Sciences)

  • Lili Qian

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Linhui Zhai

    (Chinese Academy of Sciences)

  • Jing Li

    (Shanghai Jiao Tong University)

  • Han Lu

    (Shanghai Jiao-Tong University School of Medicine (SJTU-SM))

  • Shengnan Sun

    (Chinese Academy of Sciences)

  • Jiandie Lin

    (University of Michigan Medical Center)

  • Yan Lu

    (Fudan University)

  • Xiaoying Li

    (Fudan University)

  • Minjia Tan

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

Abstract

Ubiquitin-specific protease 14 (USP14) is one of the major proteasome-associated deubiquitinating enzymes critical for proteome homeostasis. However, substrates of USP14 remain largely unknown, hindering the understanding of its functional roles. Here we conduct a comprehensive proteome, ubiquitinome and interactome analysis for USP14 substrate screening. Bioinformatics analysis reveals broad new potential roles of USP14, especially in lipid and carbohydrate metabolism. Among the potential substrates identified, we show that fatty acid synthase (FASN), a key enzyme involved in hepatic lipogenesis, is a bona fide substrate of USP14. USP14 directly interacts with and increases FASN stability. As a result, overexpression of USP14 promotes liver triglyceride accumulation in C57BL/6 mice, whereas genetic ablation or pharmacological inhibition of USP14 ameliorates hepatosteatosis, hyperglycemia and insulin resistance in obese mice. In conclusion, our findings reveal for the first time an indispensable role of USP14 in hepatosteatosis through FASN stabilization.

Suggested Citation

  • Bin Liu & Shangwen Jiang & Min Li & Xuelian Xiong & Mingrui Zhu & Duanzhuo Li & Lei Zhao & Lili Qian & Linhui Zhai & Jing Li & Han Lu & Shengnan Sun & Jiandie Lin & Yan Lu & Xiaoying Li & Minjia Tan, 2018. "Proteome-wide analysis of USP14 substrates revealed its role in hepatosteatosis via stabilization of FASN," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-07185-y
    DOI: 10.1038/s41467-018-07185-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-07185-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-07185-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dongni Shi & Xianqiu Wu & Yunting Jian & Junye Wang & Chengmei Huang & Shuang Mo & Yue Li & Fengtian Li & Chao Zhang & Dongsheng Zhang & Huizhong Zhang & Huilin Huang & Xin Chen & Y. Alan Wang & Chuyo, 2022. "USP14 promotes tryptophan metabolism and immune suppression by stabilizing IDO1 in colorectal cancer," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    2. Minxuan Xu & Jun Tan & Xin Liu & Li Han & Chenxu Ge & Yujie Zhang & Fufang Luo & Zhongqin Wang & Xiaoqin Xue & Liangyin Xiong & Xin Wang & Qinqin Zhang & Xiaoxin Wang & Qin Tian & Shuguang Zhang & Qin, 2023. "Tripartite motif containing 26 prevents steatohepatitis progression by suppressing C/EBPδ signalling activation," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    3. Zhen Ning & Xin Guo & Xiaolong Liu & Chang Lu & Aman Wang & Xiaolin Wang & Wen Wang & Huan Chen & Wangshu Qin & Xinyu Liu & Lina Zhou & Chi Ma & Jian Du & Zhikun Lin & Haifeng Luo & Wuxiyar Otkur & Hu, 2022. "USP22 regulates lipidome accumulation by stabilizing PPARγ in hepatocellular carcinoma," Nature Communications, Nature, vol. 13(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-07185-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.