IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-07110-3.html
   My bibliography  Save this article

Gene inversion potentiates bacterial evolvability and virulence

Author

Listed:
  • Christopher N. Merrikh

    (University of Washington)

  • Houra Merrikh

    (University of Washington
    University of Washington)

Abstract

Most bacterial genes are encoded on the leading strand, co-orienting the movement of the replication machinery with RNA polymerases. This bias reduces the frequency of detrimental head-on collisions between the two machineries. The negative outcomes of these collisions should lead to selection against head-on alleles, maximizing genome co-orientation. Our findings challenge this model. Using the GC skew calculation, we reveal the evolutionary inversion record of all chromosomally encoded genes in multiple divergent bacterial pathogens. Against expectations, we find that a large number of co-oriented genes have inverted to the head-on orientation, presumably increasing the frequency of head-on replication-transcription conflicts. Furthermore, we find that head-on genes, (including key antibiotic resistance and virulence genes) have higher rates of non-synonymous mutations and are more frequently under positive selection (dN/dS > 1). Based on these results, we propose that spontaneous gene inversions can increase the evolvability and pathogenic capacity of bacteria through head-on replication-transcription collisions.

Suggested Citation

  • Christopher N. Merrikh & Houra Merrikh, 2018. "Gene inversion potentiates bacterial evolvability and virulence," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-07110-3
    DOI: 10.1038/s41467-018-07110-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-07110-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-07110-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haoxuan Liu & Jianzhi Zhang, 2022. "Testing the adaptive hypothesis of lagging-strand encoding in bacterial genomes," Nature Communications, Nature, vol. 13(1), pages 1-4, December.
    2. Houra Merrikh & Christopher Merrikh, 2022. "Reply to: Testing the adaptive hypothesis of lagging-strand encoding in bacterial genomes," Nature Communications, Nature, vol. 13(1), pages 1-5, December.
    3. James S. Horton & Louise M. Flanagan & Robert W. Jackson & Nicholas K. Priest & Tiffany B. Taylor, 2021. "A mutational hotspot that determines highly repeatable evolution can be built and broken by silent genetic changes," Nature Communications, Nature, vol. 12(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-07110-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.