IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-07061-9.html
   My bibliography  Save this article

Seasonal energy exchange in sea ice retreat regions contributes to differences in projected Arctic warming

Author

Listed:
  • Robyn C. Boeke

    (Science Systems Applications Inc)

  • Patrick C. Taylor

    (Climate Science Branch)

Abstract

Rapid and, in many cases, unprecedented Arctic climate changes are having far-reaching impacts on natural and human systems. Despite state-of-the-art climate models capturing the rapid nature of Arctic climate change, termed Arctic amplification, they significantly disagree on its magnitude. Using a regional, process-oriented surface energy budget analysis, we argue that differences in seasonal energy exchanges in sea ice retreat regions via increased absorption and storage of sunlight in summer and increased upward surface turbulent fluxes in fall/winter contribute to the inter-model spread. Models able to more widely disperse energy drawn from the surface in sea ice retreat regions warm more, suggesting that differences in the local Arctic atmospheric circulation response contribute to the inter-model spread. We find that the principle mechanisms driving the inter-model spread in Arctic amplification operate locally on regional scales, requiring an improved understanding of atmosphere-ocean-sea ice interactions in sea ice retreat regions to reduce the spread.

Suggested Citation

  • Robyn C. Boeke & Patrick C. Taylor, 2018. "Seasonal energy exchange in sea ice retreat regions contributes to differences in projected Arctic warming," Nature Communications, Nature, vol. 9(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-07061-9
    DOI: 10.1038/s41467-018-07061-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-07061-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-07061-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-07061-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.