IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-07047-7.html
   My bibliography  Save this article

Controlling reaction pathways of selective C–O bond cleavage of glycerol

Author

Listed:
  • Weiming Wan

    (Columbia University)

  • Salai C. Ammal

    (University of South Carolina)

  • Zhexi Lin

    (Columbia University)

  • Kyung-Eun You

    (University of South Carolina)

  • Andreas Heyden

    (University of South Carolina)

  • Jingguang G. Chen

    (Columbia University)

Abstract

The selective hydrodeoxygenation (HDO) reaction is desirable to convert glycerol into various value-added products by breaking different numbers of C–O bonds while maintaining C–C bonds. Here we combine experimental and density functional theory (DFT) results to reveal that the Cu modifier can significantly reduce the oxophilicity of the molybdenum carbide (Mo2C) surface and change the product distribution. The Mo2C surface is active for breaking all C–O bonds to produce propylene. As the Cu coverage increases to 0.5 monolayer (ML), the Cu/Mo2C surface shows activity towards breaking two C–O bonds and forming ally-alcohol and propanal. As the Cu coverage further increases, the Cu/Mo2C surface cleaves one C–O bond to form acetol. DFT calculations reveal that the Mo2C surface, Cu-Mo interface, and Cu surface are distinct sites for the production of propylene, ally-alcohol, and acetol, respectively. This study explores the feasibility of tuning the glycerol HDO selectivity by modifying the surface oxophilicity.

Suggested Citation

  • Weiming Wan & Salai C. Ammal & Zhexi Lin & Kyung-Eun You & Andreas Heyden & Jingguang G. Chen, 2018. "Controlling reaction pathways of selective C–O bond cleavage of glycerol," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-07047-7
    DOI: 10.1038/s41467-018-07047-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-07047-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-07047-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liao, Junwei & Zhong, Quanwang & Gu, Juwen & Qiu, Songbai & Meng, Qingwei & Zhang, Qian & Wang, Tiejun, 2022. "New approach for bio-jet fuels production by hydrodeoxygenation of higher alcohols derived from C-C coupling of bio-ethanol," Applied Energy, Elsevier, vol. 324(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-07047-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.