IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-07004-4.html
   My bibliography  Save this article

Fluidity onset in graphene

Author

Listed:
  • Denis A. Bandurin

    (School of Physics, University of Manchester)

  • Andrey V. Shytov

    (School of Physics, University of Exeter)

  • Leonid S. Levitov

    (Massachusetts Institute of Technology)

  • Roshan Krishna Kumar

    (School of Physics, University of Manchester
    National Graphene Institute, University of Manchester)

  • Alexey I. Berdyugin

    (School of Physics, University of Manchester)

  • Moshe Shalom

    (School of Physics, University of Manchester
    National Graphene Institute, University of Manchester)

  • Irina V. Grigorieva

    (School of Physics, University of Manchester)

  • Andre K. Geim

    (School of Physics, University of Manchester
    National Graphene Institute, University of Manchester)

  • Gregory Falkovich

    (Weizmann Institute of Science
    Novosibirsk State University)

Abstract

Viscous electron fluids have emerged recently as a new paradigm of strongly-correlated electron transport in solids. Here we report on a direct observation of the transition to this long-sought-for state of matter in a high-mobility electron system in graphene. Unexpectedly, the electron flow is found to be interaction-dominated but non-hydrodynamic (quasiballistic) in a wide temperature range, showing signatures of viscous flows only at relatively high temperatures. The transition between the two regimes is characterized by a sharp maximum of negative resistance, probed in proximity to the current injector. The resistance decreases as the system goes deeper into the hydrodynamic regime. In a perfect darkness-before-daybreak manner, the interaction-dominated negative response is strongest at the transition to the quasiballistic regime. Our work provides the first demonstration of how the viscous fluid behavior emerges in an interacting electron system.

Suggested Citation

  • Denis A. Bandurin & Andrey V. Shytov & Leonid S. Levitov & Roshan Krishna Kumar & Alexey I. Berdyugin & Moshe Shalom & Irina V. Grigorieva & Andre K. Geim & Gregory Falkovich, 2018. "Fluidity onset in graphene," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-07004-4
    DOI: 10.1038/s41467-018-07004-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-07004-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-07004-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yotam Wolf & Amit Aharon-Steinberg & Binghai Yan & Tobias Holder, 2023. "Para-hydrodynamics from weak surface scattering in ultraclean thin flakes," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    2. Sujatha Vijayakrishnan & F. Poitevin & Oulin Yu & Z. Berkson-Korenberg & M. Petrescu & M. P. Lilly & T. Szkopek & Kartiek Agarwal & K. W. West & L. N. Pfeiffer & G. Gervais, 2023. "Anomalous electronic transport in high-mobility Corbino rings," Nature Communications, Nature, vol. 14(1), pages 1-6, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-07004-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.