IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-06923-6.html
   My bibliography  Save this article

High-energy-density dual-ion battery for stationary storage of electricity using concentrated potassium fluorosulfonylimide

Author

Listed:
  • Kostiantyn V. Kravchyk

    (ETH Zürich
    Empa—Swiss Federal Laboratories for Materials Science and Technology)

  • Preeti Bhauriyal

    (Indian Institute of Technology (IIT) Indore)

  • Laura Piveteau

    (ETH Zürich
    Empa—Swiss Federal Laboratories for Materials Science and Technology)

  • Christoph P. Guntlin

    (ETH Zürich
    Empa—Swiss Federal Laboratories for Materials Science and Technology)

  • Biswarup Pathak

    (Indian Institute of Technology (IIT) Indore)

  • Maksym V. Kovalenko

    (ETH Zürich
    Empa—Swiss Federal Laboratories for Materials Science and Technology)

Abstract

Graphite dual-ion batteries represent a potential battery concept for large-scale stationary storage of electricity, especially when constructed free of lithium and other chemical elements with limited natural reserves. Owing to their non-rocking-chair operation mechanism, however, the practical deployment of graphite dual-ion batteries is inherently limited by the need for large quantities of electrolyte solutions as reservoirs of all ions that are needed for complete charge and discharge of the electrodes. Thus far, lithium-free graphite dual-ion batteries have employed moderately concentrated electrolyte solutions (0.3–1 M), resulting in rather low cell-level energy densities of 20–70 Wh kg−1. In this work, we present a lithium-free graphite dual-ion battery utilizing a highly concentrated electrolyte solution of 5 M potassium bis(fluorosulfonyl)imide in alkyl carbonates. The resultant battery offers an energy density of 207 Wh kg−1, along with a high energy efficiency of 89% and an average discharge voltage of 4.7 V.

Suggested Citation

  • Kostiantyn V. Kravchyk & Preeti Bhauriyal & Laura Piveteau & Christoph P. Guntlin & Biswarup Pathak & Maksym V. Kovalenko, 2018. "High-energy-density dual-ion battery for stationary storage of electricity using concentrated potassium fluorosulfonylimide," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-06923-6
    DOI: 10.1038/s41467-018-06923-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-06923-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-06923-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hamdani, I.R. & Bhaskarwar, A.N., 2021. "Recent progress in material selection and device designs for photoelectrochemical water-splitting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    2. Luo, Wen & Yu, Dandan & Ge, Tianqi & Yang, Jie & Dong, Shuai & Chen, Huayu & Qin, Laishun & Huang, Yuexiang & Chen, Da, 2024. "Balancing salt concentration and fluorinated cosolvent for graphite cathode-based dual-ion batteries," Applied Energy, Elsevier, vol. 358(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-06923-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.