Author
Listed:
- Alia Jouhara
(Université de Nantes)
- Nicolas Dupré
(Université de Nantes)
- Anne-Claire Gaillot
(Université de Nantes)
- Dominique Guyomard
(Université de Nantes)
- Franck Dolhem
(Université de Picardie Jules Verne
Réseau sur le Stockage Électrochimique de l’Énergie (RS2E))
- Philippe Poizot
(Université de Nantes
Institut Universitaire de France (IUF), 1 rue Descartes)
Abstract
Meeting the ever-growing demand for electrical storage devices requires both superior and “greener” battery technologies. Nearly 40 years after the discovery of conductive polymers, long cycling stability in lithium organic batteries has now been achieved. However, the synthesis of high-voltage lithiated organic cathode materials is rather challenging, so very few examples of all-organic lithium-ion cells currently exist. Herein, we present an inventive chemical approach leading to a significant increase of the redox potential of lithiated organic electrode materials. This is achieved by tuning the electronic effects in the redox-active organic skeleton thanks to the permanent presence of a spectator cation in the host structure exhibiting a high ionic potential (or electronegativity). Thus, substituting magnesium (2,5-dilithium-oxy)-terephthalate for lithium (2,5-dilithium-oxy)-terephthalate enables a voltage gain of nearly +800 mV. This compound being also able to act as negative electrode via the carboxylate functional groups, an all-organic symmetric lithium-ion cell exhibiting an output voltage of 2.5 V is demonstrated.
Suggested Citation
Alia Jouhara & Nicolas Dupré & Anne-Claire Gaillot & Dominique Guyomard & Franck Dolhem & Philippe Poizot, 2018.
"Raising the redox potential in carboxyphenolate-based positive organic materials via cation substitution,"
Nature Communications, Nature, vol. 9(1), pages 1-11, December.
Handle:
RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-06708-x
DOI: 10.1038/s41467-018-06708-x
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-06708-x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.