IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-06702-3.html
   My bibliography  Save this article

An engineered thermal-shift screen reveals specific lipid preferences of eukaryotic and prokaryotic membrane proteins

Author

Listed:
  • Emmanuel Nji

    (Stockholm University)

  • Yurie Chatzikyriakidou

    (Stockholm University)

  • Michael Landreh

    (Karolinska Institutet)

  • David Drew

    (Stockholm University)

Abstract

Membrane bilayers are made up of a myriad of different lipids that regulate the functional activity, stability, and oligomerization of many membrane proteins. Despite their importance, screening the structural and functional impact of lipid–protein interactions to identify specific lipid requirements remains a major challenge. Here, we use the FSEC-TS assay to show cardiolipin-dependent stabilization of the dimeric sodium/proton antiporter NhaA, demonstrating its ability to detect specific protein-lipid interactions. Based on the principle of FSEC-TS, we then engineer a simple thermal-shift assay (GFP-TS), which facilitates the high-throughput screening of lipid- and ligand- interactions with membrane proteins. By comparing the thermostability of medically relevant eukaryotic membrane proteins and a selection of bacterial counterparts, we reveal that eukaryotic proteins appear to have evolved to be more dependent to the presence of specific lipids.

Suggested Citation

  • Emmanuel Nji & Yurie Chatzikyriakidou & Michael Landreh & David Drew, 2018. "An engineered thermal-shift screen reveals specific lipid preferences of eukaryotic and prokaryotic membrane proteins," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-06702-3
    DOI: 10.1038/s41467-018-06702-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-06702-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-06702-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Iven Winkelmann & Povilas Uzdavinys & Ian M. Kenney & Joseph Brock & Pascal F. Meier & Lina-Marie Wagner & Florian Gabriel & Sukkyeong Jung & Rei Matsuoka & Christoph Ballmoos & Oliver Beckstein & Dav, 2022. "Crystal structure of the Na+/H+ antiporter NhaA at active pH reveals the mechanistic basis for pH sensing," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-06702-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.