IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-06697-x.html
   My bibliography  Save this article

The H3K9 methyltransferase SETDB1 maintains female identity in Drosophila germ cells

Author

Listed:
  • Anne E. Smolko

    (Case Western Reserve University School of Medicine)

  • Laura Shapiro-Kulnane

    (Case Western Reserve University School of Medicine)

  • Helen K. Salz

    (Case Western Reserve University School of Medicine)

Abstract

The preservation of germ cell sexual identity is essential for gametogenesis. Here we show that H3K9me3-mediated gene silencing is integral to female fate maintenance in Drosophila germ cells. Germ cell specific loss of the H3K9me3 pathway members, the H3K9 methyltransferase SETDB1, WDE, and HP1a, leads to ectopic expression of genes, many of which are normally expressed in testis. SETDB1 controls the accumulation of H3K9me3 over a subset of these genes without spreading into neighboring loci. At phf7, a regulator of male germ cell sexual fate, the H3K9me3 peak falls over the silenced testis-specific transcription start site. Furthermore, H3K9me3 recruitment to phf7 and repression of testis-specific transcription is dependent on the female sex determination gene Sxl. Thus, female identity is secured by an H3K9me3 epigenetic pathway in which Sxl is the upstream female-specific regulator, SETDB1 is the required chromatin writer, and phf7 is one of the critical SETDB1 target genes.

Suggested Citation

  • Anne E. Smolko & Laura Shapiro-Kulnane & Helen K. Salz, 2018. "The H3K9 methyltransferase SETDB1 maintains female identity in Drosophila germ cells," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-06697-x
    DOI: 10.1038/s41467-018-06697-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-06697-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-06697-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shiran Bar & Dan Vershkov & Gal Keshet & Elyad Lezmi & Naama Meller & Atilgan Yilmaz & Ofra Yanuka & Malka Nissim-Rafinia & Eran Meshorer & Talia Eldar-Geva & Nissim Benvenisty, 2021. "Identifying regulators of parental imprinting by CRISPR/Cas9 screening in haploid human embryonic stem cells," Nature Communications, Nature, vol. 12(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-06697-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.